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ABSTRACT

The facilities available at the Statewide Air Pollution Research
Center, University of California, Riverside, including the environmental
chamber laboratory established under a joint California Air Resources
Board (CARB)/University of California program, have been employed in
several studies relevant to the development of air pollution control
strategies by the CARB.

In order to assess the effects of potential emissions of nitrogenous
species due to the proposed injection of ammonia into electric utility
power plants (to reduce NO, emissions), the atmospheric fates of selected
nitriles (acetonitrile, propionitrile and acrylonitrile) were investigated.
From a consideration of results of indoor chamber experiments and from our
measurements of the absolute rate constants for the reaction of hydroxyl
radicals with the nitriles, it is evident that the major atmospheric fates
of these compounds will be via reaction with the OH radical. Additiomnal
dual-mode outdoor chamber experiments were carried out to ascertain the
effects of emitted NH3 on the NOy-air and NOy-HNOj3-air photochemical
systems; no effect on the gas phase chemistry was observed, although higher
particulate burdens were found on the added NHj3 sides.

In a continuing study of chamber-dependent effects, the magnitude
and character of offgassing of nitrogenous compounds from the SAPRC 5800~
liter chamber was determined under a variety of conditions. Subsequently a
series of NOy-air irradiations, with added traces of propane and propene
to monitor OH radical levels, were carried out in four chambers of differ-
ing size to investigate the origin and nature of chamber-dependent radical
sources. The results of this study showed conclusively the presence of
unknown chamber-dependent radical sources, and indicated that photolysis of
initial nitrous acid could be, at best, only a minor contributor to radical
input during typical multi~hour chamber experiments.

In order to investigate the atmospheric fates of pesticides and
herbicides, an exploratory study was carried out using long path Fourier
transform infrared spectroscopy in a ~30,000-liter outdoor chamber with
the selected model pesticide compounds, trimethylphosphate, phenyl N-
methylcarbamate and 1,3-dichloropropene. Dark reactions with ozone and
NOy-air photooxidations were carried out. For all three compounds, reac-
tion with the OH radical will be the major atmospheric loss process, with
lifetimes calculated to be in the range of ~20-50 hours.
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I. EXECUTIVE SUMMARY

This report presents results from several projects of direct rele-
vance to the development and implementation of air pollution control
strategies by the California Air Resources Board. In two new areas of
research, we have (a) investigated the atmospheric chemistry of selected
nitrogenous compounds (acetonitrile, propionitrile and ammonia) which might
be expected to be products of the injection of ammonia in fossil fuel power
plants (in order to reduce NOy emissions), including the determination of
absolute rate constants for the reactions of OH radicals with selected
nitriles, and (b) have conducted exploratory studies, employing long-path
Fourier transform infrared spectroscopy, to determine the atmospheric fates
of selected pesticides and related model compounds.

As part of an on-going program to obtain a reliable data base for the
validation of the chemical mechanisms in urban airshed models utilized by
the Air Resources Board, we have experimentally investigated chamber-
dependent radical sources using four SAPRC chambers of differing size and
employing differing light sources (i.e., 5800-liter TFE coated evacuable
chamber, 6000-liter indoor all-Teflon chamber, ~100-liter Teflon bags and
~40,000-1liter outdoor Teflon bags). Our results, which conclusively show
the presence of chamber-dependent radical sources, have significantly
advanced our understanding of this phenomenon, and have important implica-
tions concerning computer models of photochemical air pollution based on
smog chamber data as well as for experimental determinations of hydrocarbon
reactivity in chambers.

Summaries of the results obtained for each element of this research
program (Contract No. A8-145-31) are given in the following pages of the
Executive Summary. Sections II-V provide a detailed report of the work
carried out in the studies cited above. Appendix A provides the detailed
data sheets for the experiments relating to the chamber radical source

investigation.
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A. Investigation of the Atmospheric Reactions of Nitrogenous Compounds

Anticipated from NHs Injection in Electric Utility Power Plants

The amount of NO and N0y formed from the oxidation of the nitrogen
in air during the burning of fossil fuels can be significantly reduced
by modifications to combustion techmology, but such modificatiouns have
little effect on the formation of NO; resulting from the oxidation of
fuel-bound nitrogen. On the other hand reduction of NO by ammonia (NH3)
injection has been proposed as a viable method for control of the NOy
formed from both sources in the effluents of fossil fuel burning power
plants. At present ammonia appears to be the only compound that is cap-—
able of selectively reducing NO, in the presemce of a large amount of
oxygen over a wide range of NH3/NO molar ratios, and research has been
undertaken in both the U.S.A. and Japan to perfect ammonia injection
methods employing both catalytic and noncatalytic (e.g., Exxon’s Thermal
Denox process) techniques.

Pending regulations in California call for approximately 95% reduc~-
tion in NOy emissions from sources such as electric utility power plants
by 1985. Under the impetus of this requirement serious consideration is
being given to application of the Thermal Denox process to power plants in
the South Coast Air Basin, and perhaps elsewhere in the state. Hence it
is important to establish now whether or not significant emissions of NH3
may occur, and whether, as a result of the complex free radical reactions
involved in this process, other compounds may be formed which in themselves
may constitute a hazard or which under atmospheric transformations may lead
to the formation of toxic species.

In preliminary laboratory studies Exxon workers have identified only
five species as pollutant by-products from the Thermal Denox process:
N,0, CO, HCN, S03 and NH4HSO4. In addition they found that ammonia
itself will be emitted at a concentration of at least 5 ppm. However,
consideration of actual power plant operating conditions of temperature and
oxygen concentration together with available kinetic and thermodynamic data
suggested the possibility (Brown 1979) that a number of low molecular
weight nitrogenous compounds including alkyl amines and nitriles might be

formed at significant concentration levels.
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Atmospheric Reactions of Selected Nitriles. The California Air

Resources Board funded a program in the laboratories of Professor Robert
Sawyer at the Department of Mechanical Engineering, University of Calif-
ornia, Berkeley, to attempt to detect the formation of nitrogenous com-
pounds under laboratory conditionse. While the intention was to use the
data from this UC Berkeley study to determine which nitrogenous species to
study at SAPRC, it was not possible to postpone this phase of the SAPRC
study until the Berkeley data became available. Hence, based upon the
available information it was decided to investigate the atmospheric reac-—
tions of selected aliphatic nitriles: acetonitrile (CH3CN), propio-
nitrile (CoH5-CN) and acrylonitrile (CHp=CHCN). These studies were car-
ried out in two parts: (a) environmental chamber studies of the reactions
of these compounds with ozone and the nitrate radical (NO3), and in irra-
diated NOy-air systems; (b) the determination, using a flash photolysis-
resonance fluorescence technique, of the absolute rate constants for the
reaction of OH radicals with these three nitriles. In addition, we inves-
tigated, using an outdoor chamber in dual-mode, the effect of NH3 on
radical levels from NOz-air irradiations in order to assess the impact of
NH3 emissions on photochemical air pollution systems.

The studies to investigate the major atmospheric fates of the nitriles
CH4CN and CoH5CN were carried out in the SAPRC ~6400-liter indoor all-
glass (Pyrex) environmental chamber. The first set of experiments were
carried out to determine the dark decay rates of acetonitrile and propio-
nitrile in pure air in the presence and absence of 03 and NOy, and con-
sisted of the following: (1) injection of ~100 ppb of each nitrile into
an atmosphere of pure air, and monitoring its decay; (2) injection of
1.5 ppm of O3 into the chamber where ~100 ppb of each nitrile has al-
ready been injected; and (3) injection of ~0.5 ppm of NO into the chamber
containing ~100 ppb of each nitrile and ~1.5 ppm of 03.

The purpose of the third experiment was to determine if the nitriles
react with the nitrate (NC3) radical which is formed from the reaction of
03 with NOj. This possibility had to be examined because we have pre-
viously shown (Carter et al. 1981) that reaction with the NO3 radical

is a significant atmospheric degradation pathway of phenolic compounds.
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No significant decay of either nitrile, other than that which can be
attributed to dilution due to sampling or chamber leakage, was observed
under any of the conditions employed. Thus, removal of these simple
nitriles (CH3CN and CoHgCN) by surface absorption, by reaction with
03, or by reaction with the NO3 radical will be negligible under atmos-—
pheric conditions.

From these observed nitrile loss rates in the 6400-liter environmental
chamber, upper limits to their rate constants for reaction with 03 can

readily be calculated to be:

03 + CH3CN; k < 1.5 = 10719 cm3 molecule~™! sec™l
and :

03 + CgH5CN; k< 1.0 x 1019 co3 molecule!l sec™!
at 299 + 1 K.

For the case of acrylonitrile (CHp=CHCN), an upper limit to the
ozone reaction rate comstant has recently been determined in another study
from the decay of 03 in the presence and absence of CH9=CHCN to be k <
1.0 x 10719 cm3 molecule~! sec—l at 296 + 2 K (Atkimson et al. 1981).

In order to determine the loss rates of the nitriles due to photolysis
and/or reaction with the hydroxyl radical ~200 ppb of CH3CN and ~100
ppb of CoH5CN were irradiated in (2) pure dry air and (b) NOyx—dry air,
with < 100 ppb of neopentane and n-butane added as tracers to monitor
chamber OH radical levels.

In both irradiations, the nitriles and the two alkane tracers were
observed to disappear at rates somewhat higher than anticipated from the
sampling rates. The observed differences in the disappearance rates of
neopentane and n-butane implies the presence of OH radicals, and the OH
radical concentration was accurately determined from analysis of the
neopentane/n-butane concentration ratio data (Atkinson et al. 1978), since
this procedure eliminates gas chromatographic sample size differences.
With these radical levels the disappearance rates of neopentane and n-
butane due solely to reaction with OH radicals were then calculated allow-—
ing a chamber dilution rate of (7-8) x 10"4 min’l to be estimated for

both dirradiations. Since the nitrile disappearance rates Wwere, within

14



experimental error, identical to this derived dilution rate, no evidence of
photolytic or chemical reaction loss rates could be obtained, in agreement
with the nitrile-pure air photolysis.

To obtain further quantitative information as to the OH radical
reaction rate constants, absolute rate constants were obtained using the
flash photolysis-resonance fluorescence technique available at SAPRC.

Using this technique, which has been described in detail previously in
the literature (Harris et al. 1980), the rate constants k for the reaction
of OH radicals with the nitriles CH3CN, CH5CN and CHp=CHCN (acrylo-
nitrile) given in Table 1 were determined. In the case of acrylomitrile
decay rates were also measured at total pressures of 100 and 500 torr of
argon at 298 K. As can be seen from and Table 1, the rate constant was
~18% higher at the highest pressure indicating that the reaction proceeds
partially or entirely via an addition mechanism and that at room tempera-
ture the reaction is in its fall-off region between second order and third
order kinetics over the pressure range studied.

The Arrhenius expressions obtained from least squares analyses of
the data in Table 1 are given in Table 2. The rate constants reported
here may be used to calculate lifetimes due to reaction with OH radicals of
~160 days, ~40 days and ~2 days for CH3CN, CoH5CN and CHp=CHCN, respec-
tively, at 298 K, assuming an atmospheric OH radical concentration of
~1 x 108 cm™3. Thus, from these data and the data obtained from the
environmental chamber studies, it is obvious that the major atmospheric
loss process for these nitriles is reaction with the OH radical, with
CH3CN and CoHg5CN being less reactive than ethane, but with acryloni-
trile reacting at a significant rate under atmospheric conditions.

Effect of NHq on NO,—-Air Irradiations. Since low levels of NHj

are expected to be emitted in the thermal ammonia injection processes, it
is of interest to ascertain the effects of this emitted NH3 on photo-
chemical air pollution. The simplest and most unambiguously interpretable
photochemical system is the irradiated NO-NOjs—-air system with added
propene/propane as a radical trace (see Sectiom IV).

Accordingly, two irradiations were carried out using the SAPRC

~40,000~1iter wvolume outdoor Teflon chamber under dual mode conditions.

15



Table 1. Rate Constants for the Reactions of OH Radicals with

Acetonitrile, Propionmitrile and Acrylonitrile

Reactant Temperature 1013 %
K cm3molecule“lsec“
Acetonitriie 297.2 0.494 + 0.06
348.0 0.620 + 0.07
423.8 1.05 + 0.15
Propionitrile 298.2 1.94 + 0.20
350.8 2.33 + 0.25
384.0 3.62 + 0.36
423.0 4.14 + 0.40
Acrylonitrile 299.0 40.6 + 4.1
349.6 40.4 + 4.1
422.5 40.2 + 4.0
298.7b 43.2 + 4.3
298.7¢ 48.0 + 5.0
2The indicated error limits are the estimated overal error limits and

include the least square standard deviations as well as the estimated
accuracy limits of flow meter calibrations, pressure measurements, eCcC.

bTotal pressure 100 torr argom.
CTotal pressure 500 torr argon.

Table 2. Arrhenius Parameters for the Reactions of OH Radicals with
Acetonitrile, Propionitrile and Acrylonitrile

1013 a

Reactant E
cm3molecule~lsec! cal mole~la
Acetonitrile 5.86 1500 + 250
Propionitrile 26.9 1590 + 350
Acrylonitrile 40.4 + 0.45P -

aThe indicated errors for the Arrhenius activation energies are the

estimated overall error limits.

b50 torr total pressure argom.

No cbservable temperature dependence.

16
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These irradiations consisted of (a) an NO-NOj-propene-propane-air irradi-
ation with added NH3 in one side of the dual-mode chamber, and (b) an
NO-NOj-propene~propane-HNO3-air irradiation with added NH3 (at ~1 ppm
concentration) in one side of the dual-mode chamber. In both irradia-
tions, the initial concentrations were: NO ~0.4 ppm; NOp ~0O.1 ppm; and
for the added HNO3 irradiation, HNOj ~0.5 ppum. Table 3 summarizes the
hydroxyl radical 1levels calculated from the propene/propane ratio data.

As seen from Table 3, for the irradiated NO-NOjp-air mixture with
added NH3 on side A (Run 2), the two sides of the irradiated bag behaved
essentially identically, although there was a somewhat higher particulate
burden on the added ammonia side, as expected. For the irradiated NO-NO2-
HNO3-air system with and without added NH3 (Run 3), the data (Table 3)
again show that within the experimental errors‘the chemistry occurring is
identical, as evident, for example, by the identical hydrocarbon decay
rates in sides A and B. Furthermore, since side A (with added NH3) had,
as expected, substantially higher particulate levels (~50-80 Qms cm—3
in side A versus 0-2 pm3 cm™3 in side B), it is obvious that the presence
of particulates had no effect on the OH radical concentration. As a
control experiment, prior to the added NH3 irradiations, an NO-NOj-air
irradiation in the entire (undivided) bag (Run 1) was carried out. As
seen from Table 3, the radical levels were, within the analytical accuracy,
identical to those obtained in the divided bag with and without added
NH3.

These data imply that: (a) the addition of NH3 has a negligible
effect on radical levels, NO to NOs conversion, and NOy loss in irradiated
NOy-hydrocarbon-air systems, and (b) the expected increased particulate
burden associated with NH3 emissions (due to NH3 + HNO3 - NH,¥NO3™) also
has no observable effect on radical levels, NO to NO, conversion or NOyx
loss.

B. An Experimental Investigation of Offgasing of Nitrogenous Compounds

in the SAPRC 5800-Liter Chamber

For the past several years, under funding from the California Air

Resources Board and other agencies, we have been studying the effects of a

17



Table 3. OH Concentration Levels in Outdoor NO —Air Irradiations

a
Run OH Concentration, Radical cm_3
No. Conditions Side A Side B
1 Undivided bag —————— 0.93 x 109
NO-NOj-air
2 Divided bag 1.1 x 106 1.1 x 106
NO-NOg-air
~1 ppm NH3 side A
3 Divided bag (1.2 + 0.2) x 106 (1.0 + 0.2) x 10°

NO-NO9-HNO3-air
~1 ppm NH3 side A

4Calculated from the formula
[oH] = (kz—kl)‘ldln([propane]/[propene])/dt

where ki and k) are rate constants for the reaction of OH with
propane and propene, respectively (Atkinson et al., 1879).

variety of physical parameters on the formation of simulated photochemical
smog. In our previous SAPRC-~ARB chamber program (Contract No. A7-175-30),
a series of experiments were carried out in the 5800-liter evacuable
chamber to determine the effects of temperature on smog formation. These
experiments involved irradiations of surrogate hydrocarbon-NOy—-air mix-
tures and (for control purposes) alkane-NOy-air mixtures at 282, 303 and
323 K under controlled conditioms, including a constant water concentration
of 5 x 103 ppm. The results of those experiments indicated that radical
levels and ozone yields increase significantly as the temperature is in-
creased. Furthermore, for most of the runs carried out at 323 K, the total
NOy consumption rates were considerably less than expected based on the
known NOy removal reactions, and in one experiment the total monitored NO4

levels actually increased. This may in part be due to HNO3 interferences

18



on the commercial NO-NO, analyzer employed (Winer et al. 1974, Spicer and
Miller 1974, Joseph and Spicer 1978). It is not clear how such observa-
tions can be accounted for by homogeneous gas phase chemical processes, and
the possibility of their being due entirely to heterogeneous or chamber
effects cannot be eliminated.

Clearly, before these and other evacuable chamber irradiations can be
reliably used for model wvalidation or for assessing the effects of various
parameters on smog formation, the role of chamber effects in influencing
such data must be elucidated.

In order to better characterize the role of HNO3 interferences in
affecting our NOy data and in order to determine if HNO3 is involved
in the chamber effects, a considerable amount of effort was expended
in an attempt to develop a reliable continuous HNO3 analyzer based on
modified chemiluminescence NO-NO, analyzers such as those described by
Kelly et al. (1979) and by Joseph and Spicer (1978). The modifications
exploited the facts that the molybdenum converters used in such analyzers
correct HNO3 to NO (Winer et al. 1974, Joseph and Spicer 1978) and that
nylon filters efficiently remove HNO3 (Joseph and Spicer 1978). Several
modifications of a commercial TECO 14B/E instrument were carried out with
the molybdenum converter being removed from the instrument housing and
placed physically as close to the chamber as possible in order to minimize
HNO3 losses on sample lines.

The most successful configuration tried is shown in Figure 1. In
this configuration, a continuous gas flow through both the unfiltered
and filtered converter was achieved by using two solenocids simultaneously
switched to select which gas flow goes to the detector and which is dis-~
carded. This configuration eliminated the problem with previous configur-
ations caused by HNO3 absorption and desorption, and the readings obtained
on the automatic (alternating) mode were found to be consistent with those
in the manual modes, with the unfiltered channel giving appropriately
higher readings than the filtered channel when HNO3 was present in the
gas being sampled. However, it was found that the output of the two
converters gave different readings when the gas being sampled contained no
HNO3 or when no nylon filters were employed; and when the nylon filter was

switched from one comverter to the other, different results were obtained.
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Figure 1. Schematic of configuration used to monitor nitric acid.
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These discrepancies generally amounted to 10 to 20% of the total NOy and
appeared to be worse when the gas being sampled was humidified. This
problem is probably inherent in the use of molybdenum converters for NOyx
monitoring, and all NOy data obtained using this technique nust be con-
sidered to be uncertain by at least 10 to 20%.

Two sets of offgassing experiments were then conducted. One set was
carried out with the chamber in a relatively contaminated condition follow-
ing a series of dark experiments which involved injecting O3 (0.1-1 ppm),
NOo (5-10 ppm), phenols and other aromatics (~0.l1 ppm), and alkenes
(~0.1 ppm) in 1 atm air in the chamber. The other set followed an over-
night evacuated bakeout (< 10™%4 torr at 366 K) of the chamber. In both
sets of experiments, the chamber was filled with pure air at ~5% RH and
oxides of nitrogen were monitored using both the modified (see Figure
1) and an unmodified TECO NO-NO; analyzer. The chamber temperature was
held first at ~303 K, then at ~328 K, and finally at ~363 K. At the
highest temperature, gas samples were taken for gas chromatographic analy-
sis of organics.

Additional experiments were carried out utilizing the capability of
our differential UV-visible spectrometer (DUVVS) interfaced to the chamber
to monitor the possible formation of nitrous acid (HONO). This system had
a detection limit of ~20 ppb for HONO in the configuration used.

The offgassing rates obtained using the modified and unmodified
NO-NOy instruments are summarized in Table 4 for experiments carried
out both before and after the evacuated bakeout. It can be seen that
before the evacuated bakeout, NO, offgassing occurred at 303 K and in-
creased dramatically as the temperature was increased. After the evacu-
ated bakeout, offgassing was still significant at the higher temperatures,
but was a factor of ~3 lower than before. At 303 K the NOy levels actu-
ally decreased from the background present in the pure air f£ill, indicating
that NO; adsorption onto the walls was probably occurring.

Contrary to our initial expectatiomns, offgassing of NOp was insignifi-
cant even in the contaminated chamber, since the offgassed material con-

sisted primarily of NO and some nitrogenous material which was converted to
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Table 4. Offgassing Rates (ppb hr—1) of Nitrogenous Compounds in
the SAPRC Evacuable Chamber

Unmodified TECO® Modified TECO
NO, +

Conditions NO NO5 NOy NO4®  NitrateP
Refore Evacuated

Bzakeout

303 K 0.3 0 0.3 0.3 0.8

363 K initial 78 0 78 70 140

final® 69 0 69 62 84

After Evacuated

Bakeout

303 K -0.2 —_ - -0.02 -0.6

328 K 0.7 - —-— —_ —

363 K 27 4 31 18 34

dNylon filter in line
bXo nylon filter; nitrate presumed to be HNO3.
CApproximately four hours after 363 K temperature attained.

NO by the molybdenum converter, and which was trapped by nylon. This
material is probably primarily HNO3; if HONO was formed, it was at levels
less than the ~20 ppb sensitivity of the DUVVS system. HEONO was only
detected in opme experiment in which the chamber was held at ~363 K over-
night. In that rum, a trace (~20 ppb) of HONO was detected using the
DUVVS system.

In order to determine the extent of offgassing of organic materials
at high temperatures, samples were taken for gas chromatographic analyses
during both of the 363 K temperature offgassing runs. A variety of chro-—-

matographic columns, employing both flame ionization and electron capture
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detection were used. In both experiments, no significant increase in
organic material over the background levels characteristic of our pure air
were observed, even when a total carbon analyzer was employed. It is
obvious from the results of these experiments that offgassing of nitrogenous
species can be significant in the SAPRC evacuable chamber especially at
elevated temperatures, and that this offgassing is reduced, but not elimi-
nated, by an evacuated bakeout of the chamber. The major species offgassed
appear to be NO and HNO3, with lesser amounts of NOjp being observed.
The nature and chemical or physical mechanism of this effect is presently
unknown, but clearly it must be taken into account in the analysis of data
from runs carried out at elevated temperatures in chambers with Teflon

coated interiors, and may be important in other types of chambers as well.

C. An Experimental Investigation of Chamber Dependent Radical Sources

An important aspect of the development of reliable computer models for
the formation of photochemical smog is their validation against smog
chamber data. This requires not only a complete understanding of the
kinetics and mechanisms of the chemical reactions which occur during the
photooxidations of part-per-million (ppm) concentrations of NOy and
organics in air, but also an adequate and quantitative understanding
of major chamber effects.

Recent computer modeling studies have shown that the presence of an as
yet unknown source of radicals is necessary in order to match computer-
predicted time-concentration profiles with the results of smog chamber
experiments (Hendry et al. 1978, Falls and Seinfeld 1978, Carter et al.
1979a, Whitten et al. 1979, 1980; Atkinson et al. 1980).

To date, modelers have differed on how best to represent this radical
source in their mechanisms, although it is generally assumed to be chamber
dependent. In recent studies, Falls and Seinfeld (1978) and Whitten et al.
(1979, 1980) have used only initial nitrous acid (HONO) (presumed to be
formed heterogeneously during the injection of NO,), while Carter et al.
(1979a) and Atkinson et al. (1980) have used a constant radical flux, and
Hendry et al. (1978) have used a combination of the two. These approaches

are significantly different, since the use of initial HONO leads to a
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rapidly decreasing radical flux, while a2 comstant radical source results
in a considerably greater total radical input during a typical environmental
chamber irradiation.

Clearly, aspects of the photochemical mechanisms relating to radical
initiation and termination processes cannot be unambiguously validated
using smog chamber data until this presently poorly characterized radical
source is elucidated. Despite previous studies of "dirty chamber effects"”
(Wu et al. 1976; Bufalini et al. 1972, 1977), no systematic investigation
of chamber-dependent radical sources has been reported to date.

In the present study, a series of NOy-air irradiations have been
carried out under a variety of conditions and in four environmental chambers
in order to investigate more directly the characteristics and magnitude
of this excess radical initiation effect. Imnitial NO concentrations
ranged from ~0.1 to 1.8 ppm and initial XNOj from ~0.05 to 0.5 ppm, and
in order to momnitor hydroxyl radical levels, ~10 ppb each of propemne
and propane were included in the reaction mixture. Hydroxyl radical levels
were determined from the rate of decrease of the propene/propane ratio,
based on the assumption that reaction with OH is the only significant loss

process for these species (see discussion). Thus,
[CH] = (kz—kl)“l d 1n([propanel/[propene])/dt

where ki and kp are the rate constants for the reaction of OH radicals
with propane and propene, respectively. The use of this ratio technique
eliminates the necessity to correct for dilution due to sample withdrawal
from the chamber and avoids errors due to differences in sample sizes since
both species are analyzed on the same gas chromatographic column, as has
been discussed previously (Atkinson et al. 1978).

The physical characteristics of the four chambers employed in this
study are given in Table 5; the majority of the experiments were carried
out in the SAPRC 5800-liter evacuable chamber. A representative set of
plots of 1n([propanel/[propere]) vs. time, from whose slopes the hydroxyl
radical concentrations are derived, are shown in Figures 2. In general, as
seen from Figure 2, for rums at T < 303 X, RH < 50% and [NO]/[XOp] > 1,
the OH radical levels remained essentially constant during the two-hour

irradiations, while runs where T > 303 K, RH > 50% or [NO]/[NOp] <1
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Figure 2. Plots of 1n([propanel/[propene]) against irradiation time
for evacuable chamber runs with [NOplinitial =0.1 ppm and
varying initial NO concentrations.
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generally had dinitially higher OH radical levels which decreased to a
constant value after ~30 to 60 minutes.

A number of replicate runs were carried out under standard conditioms
(NO = 0.4 ppm, NOg = 0.1 ppm, ~50% RH (evacuable chamber and indoor Tef-
lon chamber), < 10% RH (small bags), maximum light intensity) in the
various indoor chambers. These duplicate runs gave hydroxyl radical levels
which were reproducible to within + 15% in the evacuable chamber, with the
variability in the indoor Teflon chamber and between different small Teflon
bags being somewhat greater. The variability in hydroxyl radical levels in
the large outdoor chamber was considerably greater, with hydroxyl levels
varying by as much as a factor of three, but these can be attributed in
part to variations in temperature and light intensity characteristic of
outdoor irradiations.

A comparison of average hydroxyl radical levels observed in compar-
able runs performed in the four chambers is shown in Table 6. Since the
light intensity of the different chambers is in general different, a more
direct comparison can be obtained from the hydroxyl radical concentration
normalized by dividing by the light intensity (since the OH radical concen-
trations were observed to be proportional to light intensity, as discussed
below). These values are also shown 1in Table 6. It can be seen that
the intensity-normalized hydroxyl radical 1levels indeed depend signifi-
cantly on the chamber employed.

The dependence of the OH radical concentration on temperature and
relative humidity for runs in the evacuable chamber, and on humidity for
runs in the indoor Teflon chamber is shown in Table 7 for runs with ap-
proximately the same initial NO and NO, concentrations and light inten-
sity. It can be seen that the hydroxyl radical levels increase with both
temperature and humidity. The hydroxyl radical concentrations also appear
to be more strongly affected by humidity in the Teflon chamber than in the
evacuable chamber.

The dependence of hydroxyl radical concentrations on light intensity
is shown in Figure 3, which shows plots of OH radical levels against the
light intensity (as measured by kj, the NOp photolysis rate) for the

5800-1liter evacuable and 6000-~liter indoor Teflon chamber runs in which the
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Table 6. Dependence of OH Radical Levels Observed in Comparable?
NOx—-Air Irradiatioms omn Chamber Employed

k1P [OH] [0H1/kj
Chamber (min'l) (106 cm‘3) (normalized)®
Small Teflon Bag #4 0.27 bob + 0.7 3.1 + 0.6
Small Teflon Bag #5 0.27 1.4 1.0
Evacuable 0.49 2.5 + 0.2 1.0
Indoor Teflomn 0.45 0.64 + 0.1 0.3 + 0.1
Outdoor Teflom ~0.3 + 0.054 0.9 + 0.3 0.5 + 0.2

aIpnitial [NO] = 0.4 ppm; [NOol = 0.1 ppm; RH < 10%, T = 303-308 K.
bkl = NO5 photolysis rate.
CNormalized to ratio observed in the evacuable chamber runs.

dEstimated from radiometer readings using the empirical relationship
derived by Zafonte et al. (1977).

Table 7. Dependence of OH Radical Levels Observed in Standard®
NOy—Air Irradiatioms on Temperature and Relative Humidity (RH)

10_6X [0B] radical cm_3
Chamber T(K) <10% RHE 50% RH 80% R4 100% RH
284 1.6 2.1 4.7
Evacuable 303 2.5 A 16~ 11b 20 - 12b
323 5.7 18+ 9b 50 ~ 8b
Indoor
Teflon 303 0.6 1.8

aInitial [NO] - 0.4 ppm; [NO9] = 0.1 ppm; NOp photolysis rate kj
0.49 min~! (evacuable chamber), 0.45 (indoor Teflon chamber) .

boH radical concentrations changed throughout the run; initial and final
values given.
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Figure 3. Dependence of average OH radical concentrations on the

NO, photolysis rate kj for irradiations in which the
light intensity was varied (0 -5800-liter evacuable
chamber; ® - 6000-1iter all~Teflon chamber).
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light intensity was varied. It can be seen that within experimental error
the radical levels are proportional to light intensity.

The effect of NO levels on the results of the evacuable chamber
runs is shown in Figure 2, which shows plets of in({propanel/[propenel)
against irradiation time for rumns with a similar initial NOp concentra-
tion, but with initial NO concentrations varying from 0.116 to 0.797 ppm.
It can be seen that the final OH radical levels (e.g., the slopes of the
lines in Figure 2) are essentially unaffected by the NO concentration,
but that the initial slope increases as the NO level is decreased. The
hydroxyl radical levels in the evacuable chamber runs were also not strong-—
ly affected by NOp levels, except in the initial stages of irradiation,
where higher NO; levels resulted in higher initial hydroxyl levels.

The gas phase chemistry in irradiated NOy—air systems is well known
(Hampson and Garvin 1978, Atkinson et al. 1980, Atkinson and Lloyd 1980),
and the presence of trace amounts of propane and propene have a negligible
effect on this chemistry (Carter et al. 1979a, Atkinson and Lloyd 1980).
The hydroxyl radical levels observed in all the runs reported here were
significantly higher than expected from the homogenecus reactions discussed
above. This is illustrated in Figures &4 and 5, which show hydroxyl radical
concentration-time profiles derived £from the data of a representative
standard evacuable chamber run, and from a representative high initial
NO, concentration run and compares them with results of model calcula-
tions using only the known gas phase chemistry (Carter et al. 1979%a,
Atkinson et al. 1980, Atkimson and Lloyd 1980). It can be clearly seen
(curve A) that the known radical sources are at least an order of magnitude
too low to account for the observed radical levels in these rumns.

These figures also show the results of model calculations assuming (B)
only initially present HONO (at levels adjusted to fit the initial hydroxyl
radical concentrations) and of calculations (C) assuming a comstant radical
flux at ratés adjusted to fit the final OH radical levels, together with
calculations (D) assuming a combination of both. It can be seen that
assuming only initial HONO greatly underpredicts radical levels after the
initial ~15 minutes of the run, and initial HONO can be, at best, only a
minor contributor to the observed radical source after the first ~30

minutes of irradiatiom. On the other hand, using only a constant radical
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Figure 4.

IRRADIATION TIME {(mins)

Hydroxyl radical concentrations as a function of
irradiation time. P———+ experimental data for EC-
457; [NOlinitial = 0.499 ppm, [NOp]initial = 0.115
ppm; [propanel]initial = 0.013 ppm, [propenelinitial
= 0.010 ppm; [HCHOl{pitial = 0.020 ppm, T = 303 K,
RH = 50%, NO, photolysis rate constant k; 0.49
min~!; A -model calculations with the homogeneous
gas phase chemistry; B -model calculations with
[HONO]initial = 0.010 ppm; C -model calculations
with a constant OH radical flux of 0.245 ppb min~!;
D ~model calculations with {[HONOlipitial = 0.010
PpPm ?nd a constant OH radical flux of 0.245 ppb
min~".

L.
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Hydroxyl radical concentrations as a function of
irradiation time. F——~—% experimental data for EC-

442; A -model calculations with the homogeneous gas

phase chemistry; B -model calculations with [RONOl4initial
= 0.050 ppm; C-model calculations with a constant OH
radical flux of 0.61 ppb min~l; D -model calculations
with [HONOlinitial = 0.050 ppm and a constant OH radical

flux of 0.61 ppb min—1.
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flux in the calculation results in underprediction of initial OH levels,
especially in the high [NO,]/[NO] runs, and best fits to the data are
obtained if some contribution due to initial HONO is assumed. However, in
terms of the overall input of radicals during a chamber irradiation (typi-
cally > 6 hours for smog simulation runs), the constant radical flux is by
far the more important factor.

The radical flux required to fit the data for a given run can be
estimated without the necessity to carry out detailed model calculations
from the fact that radical initiation and radical termination must balance.
Since the photolytic half life of HONO in these experiments is < 15 min-
utes, HONO is in photostationary state after the first hour and the radical
initiation rates for t > 60 minutes in these photolyses can be estimated

from the equation:

Ry (t 2 60 min) = k[OH] 4y [N02]ayg

where k is the rate constant for the reaction of OH radicals with NOj.

Although the hydroxyl radical levels, and thus the radical flux, were
observed to be unaffected by NO levels, the radical flux is significantly
affected by NOs levels, and Figure 6 shows the dependence of the cal-
culated radical flux on second-hour average NO, levels for the ~507%
RH, 303 X evacuable chamber runs. Also included are the two irradiatioms
carried out at lower light intensity (EC=457 and 458) for which the observ-
ed radical fluxes have been corrected to a value of k; = 0.49 min~l. The

data are f£it by the regression line
Ry (ppb min~l) = k1[(0.30 + 0.06) + (2.9 + 0'3)[N02]avg]

(where the NO, concentration is in ppm), as shown in Figure 6. It can
be seen that although the radical flux increases with [NO»], the inter-
cept appears to be significantly greater than zéro, suggesting that the
radical source may be non-megligible even in the absence of NOj.

The initial hydroxyl radical levels suggest that HONO may be initially
present, in addition to the radical source flux. Table 8 summarizes the
initial HONO levels and radical fluxes which are necessary to £it the
observed OH radical concentrations for selected evacuable chamber runs. It

is clear that additicnal experiments are required to further characterize
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the nature of this radical source and to determine the role, if any, of

initially present HONO.

Table 8. Initial Conditions and Empirically Derived Initial HONO and
Radical Flux Values for Selected NOy,-Air Irradiations in
the SAPRC 5800-Liter Evacuable Chamber

EC Radical
Run Temper- Initial Injitial Flux
No. ature RH NO NO» HONO ppb
K % (ppm) (ppm) (ppb) min~!
453 284.5 ~0 0.403 0.109 3 0.11
452 284.7 ~50 0.375 0.091 4 0.12
454 284.0 ~100 0.373 0.081 8 0.25
455 283.4 21 0.120 0.360 16 0.33
443 303.0 ~0 0.411 0.099 4 0.17
441 303.4 45 0.431 0.104 7 0.30
457 303.4 ~45 0.403 0.093 10 0.27
445 304.2 100 0.411 ‘ 0.049 15 1.20
437 304.1 42 0.160 0.040 1.5 0.20
464 303.0 ~45 0.100 0.093 7 0.25
440 303.0 45 0.674 0.084 3 0.28
442 302.9 52 0.117 0.369 50 0.56
436 302.7 45 1.426 0.364 15 0.51
449 7323.0 ~0 0.450 0.110 8 0.40
448 323.4 ~50 0.427 0.055 25 1.19
450 324.5 100 0.597 0.140 >100 1.60
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D. Exploratory Long-Path FT-IR Studies of the Atmospheric Reactions of

Model Pesticide Compounds

Increasing attention is being focused omn the environmental hazards
posed by pesticide materials and their transformation products in the
entire ecosystem, i.e., in soil, water and the atmosphere. The yearly
application of pesticide chemicals in the United States (Lewis and Lee
1976) presently exceeds ome billiom pounds and estimates of pesticide
use in California amount to as much as 20% of national use.

Recently, the California Air Resources Board has been concerned
with reactive organic gas emissions from pesticide formulations and their
possible contribution to oxidant formation in the California central
valleys (Weins 1977). Posing the most immediate and serious health hazard,
however, is the exposure of humans to specific active pesticide ingredients
and their possible photodegradation products. Although photodegradation is
an effective pathway for removal of many pesticides in air and other media,

sunlight irradiation has been known to promote "roxic synthesis"

leading to
products which are more toxic and potentially more persistent in the
environment than the parent compounds.

It is obvious that knowledge of the phototransformation products of
pesticides in the enviromment are essential to the safe use of existing
chemicals and the introduction of new omes. While numerous studies on the
photochemistry of various pesticides have been published, the majority of
the experiments have been conducted in aqueous solutions and in other
organic solvents (Rosen 1972, Glofelty 1978). The gas phase photooxidation
studies conducted to date have employed aritifical irradiation and mnone
have included measures of photochemical reaction rates (Moilanen et al.
19763.

Since the atmosphere is a possible route for significant pesticide
transport and distribution, it is important that studies include not omnly
the identification of transformation {(photooxidation) products but provide
equally important kinetic information omn the reactions of pesticidal
materials with the atmospherically important reactive species ozone (013)
and hydroxyl (CH) radicals. Such data are essential in providing esti-
mates of atmospheric lifetimes both in the "clean" troposphere and in urban

environments.
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The present exploratory work deals with the reactions of 03 (in the
dark) and the OH radical (via photooxidation in the presence of oxides of
nitrogen) under simulated atmospheric conditions with three model pesticide
compounds: phenyl N-methylcarbamate, trimethylphosphate and trans-1,3-di-
chloropropene. The first two compounds are representive of carbamates and
organophosphates, respectively, classes of compounds which have increasing-

ly re%}aced organochlorine pesticides. While phenyl N-methylcarbamate

[C6H503NHCH3] is not known to be pesticidal, it may be considered struc-
turally as the parent of all ring-substituted carbamates, the majority of
which have pesticidal properties. Trimethylphosphate [(CH30)3P=0] is
the simplest member of the orthophosphate esters and, although not itself
used as a pesticide, it is known to be toxic, has mutagenic properties and
is of concern as an impurity in commercial organophosphate preparations.
The third compound chosen for study was 1,3-dichloropropene (cis and trans
isomers) which is used alone as a soil fumigant but is even more widely
employed in a 2:1 mixture with 1,2-dichloropropane (known as D-D mixture)
for control of nematodes.

Experiments were carried out in a ~30,000-liter FEP Teflon chamber
(Figure 7) which contained the multi-pass reflection optics for a long-path
Fourier Transform infra-red spectrometer system. A rapid-scan Midac
interferometer with a maximum resolution capability of 0.06 em~! was in-
terfaced to the multiple-reflection optics and was equipped with a dual
element, liquid N9-cooled HgCdTe and InSb detector.

During experiments, NO and NO) were monitored by a Bendix chemilu-
minescence instrument. For some runs, ozone readings were also obtained
using a Dasibi UV absorption ozone monitor to supplement those obtained by
infrared measurements. The growth and decay of all other species were
monitored by FT-IR spectroscopy at pathlengths of 200-540 meters and a
spectral resolution of 1 em~l. At these pathlengths, the strong absorp-~
tions of H»o0 and COp limit the usable infrared spectral windows to the
approximate regioms 730-1300, 2000-2300 and 2400-3000 em™l, Approximately
80 seconds were required to collect the 64 interferograms co—added for each
spectrum. Reactant and product analyses were obtained from the intensities
of infrared azbsorption bands by spectral desynthesis (i.e., successive

subtraction of overlapping absorptions by known species).
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For the three model compounds studied, three types of experiments
were carried out:

(1) Dark reactions of the compound with O3

(2) 1Irradiations of NO; model-compound air mixtures

(3) Irradiations of NOy model-compound m—-xylene air mixtures.

The latter irradiations were carried out to determine the OH radical
rate constants for reaction with the model compounds by monitorimng the
relative amounts of consumption of the model compound and of m—-Xylene
(Atkinson et al. 1978).

For phenyl N-methylcarbamate and trimethylphosphate, it was observed
that although no significant loss of these compounds was observed in
experiments of type (a) or (b) at constant temperature, large decreases in
concentration were observed when the temperature decreased. These effects
are almost certainly due to condensation of these low volatility compounds
on the chamber walls, and hence data were only analyzed for constant
temperature conditions.

The rate constant data obtained from the matrix of experiments des-
cribed above are given in Table 9. These rate constant data are in general
totally consistent with a-priori expectations from structure~reactivity
relationships (Atkinson et al. 1979, Atkinson 1980). From the rate constant
data given in Table 9, atmospheric lifetimes can be readily calculated for
assumed 03 and OH radical levels. For atmospheric concentrations of
~0.1 ppm 03 and 1 x 10® OH radicals cm“3, reaction with the OH radical

will dominate for these three compounds, with lifetimes of ~20-50 hours.

Table 9. Summary of Experimental Data for Reactions of Model Pesticide
Compounds with O3 and with the Hydroxyl Radical

Irradiated Irradiated NOy-air
Reaction  NOy—ajr-compound -m—-xylene-compound
Pesticide Compound with O3 System System

Phenyl N~methylcarbamate  No observable No observable kOH = 8x10-12%
reaction reaction

Trimethylphosphate No observable No observable kOH ~ 6x10-12%
reaction reaction

1,3-dichloropropene Reaction Reaction kOH = l.4x10"11a
observed observed

k = 7.3x10"192

aUnits of cm3 molecule~! sec—l.
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TI. INVESTIGATION OF THE ATMOSPHERIC REACTIONS OF NITROGENOUS
COMPOUNDS ANTICIPATED FROM NH3 INJECTION IN ELECTRIC UTILITY POWER PLANTS

The amount of NO and NO; formed from the oxidation of the nitrogen
in air during the burning of fossil fuels can be significantly reduced
by modifications to combustion technology, but such modifications have
little effect on the formatiom of NOy resulting from the oxidation of
fuel-bound nitrogen. On the other hand reduction of NO by ammonia (NHj)
injection has been proposed as a viable method for control of the N0y
formed from both sources in the effluents of fossil fuel burning power
plants. At present ammonia appears to be the only compound that is capable
of selectively reducing NOy in the presence of & large amount of oxygen
over a wide range of NH3/NO molar ratios.

Research has been undertaken in both the U.S.A. and Japan to perfect
ammonia injection methods employing both catalytic and noncatalytic tech~
niques. Thus, considerable work has been done concerning catalytic enhance-
ment of the rate of the NO,-NH3 reaction (Anderson et al. 1962, Nounnen-
mercher et al. 1966, Griffing et al. 1969, Schmidt et al. 1968) and recent
work has concentrated on the development of more active catalysts which are
not susceptible to S0y poisoning (Bauerle et al. 1975a,b; Matsuda et al.
1978, Nobe et al. 1978).

In a parallel program, Exxon Research and Engineering Co. has developed
a noncatalytic reduction process which is based on the homogeneous gas
phase reaction of NH3 with NO, which occurs by a complex free radical
chain mechanism (Lyon and Longwell 1976, Branch et al. 1979). Discovered
by Exxon in 1972, this "Thermal Denox' reaction competes with the oxidation

reaction (1).
NH3 + 5/4 09 - NO + 3/2 H0 (1)

When ammonia is added to combustion products containing NO at ~1230 K,
the NO is reduced to Ny (Figure 8). However, below 1000 K both the NHj
and NO pass through the system unaffected, whereas above 1400 K an overall
increase in NO occurs. Furthermore, the addition of hydrogen to the system

lowers the optimum temperature for NO reduction (Branch et al. 1979).
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Exxon has carried out a commercial demomstration of their patented
Thermal Denox process at the Kawasacki refinery of Exxon’s Japanese affili-
ate. Up to a 70% reduction in NO was achieved with this retrofit instal-
iation, and Exxon has estimated that this process could be fitted to ex-
isting boilers and furnaces in areas with strict N0y emission standards
at a cost of 7 to 15 cents/10° BTU.

Pending regulations in California call for approximately 65% reduc-
tion in NO, emissions from sources such as electric utility power plants
by 1985. Under the impetus of this requirement serious consideration is
being given to application of the Thermal Denox process to power plants in
the South Coast Air Basin, and perhaps elsewhere in the state. In view of
this, it is important to establish now whether or not significant emis-
sions of NH5 may occur, and whether, as a result of the complex free
radical reactions involved in this process, other compounds may be formed
which in themselves may constitute a hazard or which under atmospheric
transformations may lead to the formation of toxic species.

In preliminary laboratory studies Exxon workers have identified only
five species as pollutant by-products from the Thermal Denox process:
N,0, CO, HCN, SO03 and NHyHSO4. In addition they found that ammonia it-
self will be emitted at a concentration of at least 5 ppm. However, con-
sideration of actual power plant operating conditions of temperature and
oxygen concentration together with available kinetic and thermodynamic data
suggested the possibility (Brown 1979) that a number of low molecular
weight nitrogenous compounds including alkyl amines and nitriles might be
formed at significant concentration levels.

An indication of possible products formed under such conditions can be
found in published studies of the ammoxidation (reaction with NiH3 in the
presence of 0j) of unsaturated hydrocarbons over metal oxide catalysts
at elevated temperatures. Thus, propene yielded acrylomitrile and aceto-
nitrile (Sasaki et al. 1977) and isobutene gave methacrylonitrile and

acetonitrile (Rusu et al. 1974)

NH3, air
CHy=CHCH3 > CHp=CHCN + CH3CN
catalyst, ~400°C

42



(CH3) 2C=CH) > CHp=CCN + CH3CN

CH3

The California Air Resources Board funded a program in the laboratories
of Professor Robert Sawyer at the Department of Mechanical Engineering,
University of California, Berkeley, to attempt to detect the formation of
nitrogenous compounds under laboratory conditions. While our intention was
to use the data from this UC Berkeley study to determine which nitrogenous
species to study at SAPRC, it was not possible to postpone this phase of
the SAPRC study until the Berkeley data became available. Hence, it was
decided to investigate the atmospheric reactions of the selected aliphatic
nitriles, acetonitrile (CH3CN), propionitrile (CoH5CN) and acrylonitrile
(CH»=CHCN) . These studies were carried out in two parts: (a) environ-
mental chamber studies of the reactions of these compounds with ozone,
the nitrate radical (NO3) and in irradiated NOy—air systems, and (b) the
determination, using a flash photolysis-resonance fluorescence technique,
of the absolute rate constants for the reaction of OH radicals with these
selected nitriles. In addition, we have investigated, using an outdoor
chamber in dual-mode, the effect of NH3 on radical levels from NOy-air
irradiations in order to assess the impact of NHj3 emissions on photo-

chemical air pollution systems.

A. Environmental Chamber Studies

Studies were carried out to ascertain the major fates of the nitriles
CH3CN and CoH5CN under simulated atmospheric conditions.

Experimental. These studies were carried out in the SAPRC ~6400~liter

(226 fe3) all-glass (Pyrex) chamber (Figure 9) which has a surface-to-
volume ratio of 3.4 m—! (1.04 ft‘l). Photolyzing radiation is provided
by two externally mounted, diametrically opposed banks of 40 Sylvania 40-W
BL (blacklight) lamps, which are backed by an array of Alzak-coated re-—
flections. The supporting analytical facilities employed in the glass
chamber studies are shown in Figure 10, and the analytical facilities
employed in these experiments are described in detail below.

Ozone (03) was monitored by ultraviolet absorption analyzers (Dasibi
Model 1003). These instruments are calibrated using the UV absorption
method adopted by the ARB in June 1973.

43




- ZoqueYD TEIUDWUOITAUD SSETS-TT® A93TT-00%9 DUdVS ‘6 2an8Tg

3AIX010 ¥N47Ns
ANV NZOOYLIN
40 $3QIX0 “3NOZO

e 404 SYIZATUNY
o~
@:@
QB dnd
SIH O g LIM JINOS
@ii/ aNY |
/ NOI LO3NI L 404 SOILdO
J 31dAYS Al | 17130 3LIHM
B i
j

SNV T MOV 18-

431 3IN0Y L03dS
g34vd 4Nl

(Mp]-9) 81 pOBH
-

(9-z)asul & wa
SHOLOTL3a J,\

\

S

JARNAXY

-
304N0S _
I
— L.*) =
<\ =SV 4INVHANI

EF WOO

/

NI dlv 3dnd

_ / (98-ddd) W3 LSAS
@EJ ViVQ 43 LNdNOD

2a24

44



*£3TTTI0®B] Ioqueyod sse3-TTe JO OTIRWSYDS

*0T 2an814

W3I1SAS NOLLISINDIY
viva 8-ddd 3NIT-NO

AHOLVH08VY1 Y3gWVHD SSV19 J4dVs

IN3DS3H0NT4 ;

a|dnoJowsdy )

SdWV

JYNLvY3Idn3lL

foisy Appoag

HIgWVYHD SSV19

SON ‘ON ‘€0 HO4 WIALSAS
NOILVHS1TIYD 3NIT-NO

| 8po1pojoYd
ALIGINAH - 3A1LYT3Y ; ALISNILNI
LHOIT
13ALLVI3
1
Mﬁ_ﬂoo_osozu 509 mu:m%oo_q 99fy | eoy | [fudoiboiowoiyd) | @dUBISIU | iocenl anuaasan
{do) uo0iI}29|3 s3)0uabAxXQ sSD9 —wunjiay)n .>: Y iajqqng
SALVYLIN Aydoibojowory) so9 HIZLKIVNY H3IZAIUNY . OHOH
JINVOHO GNY Nvd| [SNOGHYIONAAH IVNAIAIONY | DHL-YHO-0D XON-°ON-ON SYIZXIUNV 3INOZO
| I |
I

H31INOYLDIdS SSVI
-HdVHOOLVNOYHD SVO
3NIT-440 OL

45



Nitrogen oxides (NO, N0, and NOg) were monitored by chemilumines-—
cence detection (TECO 14B). The N0, and N0y modes of this and similar
chemiluminescence NO-NO, analyzers have been shown to respond quantita-
tively to other nitrogen—containing compounds, such as peroxyacetyl nitrate
(PAN) and organic nitrates and nitrites (Winer et al. 1974, Spicer and
Miller 1974) However, the nitriles used in these studies did not vield
any observable response on these NO-NOp-NOy instruments.

Sample temperature was read from either a Doric Thermocouple indicator
(OF), using a thermocouple suspended in the chamber, or from a 19°C to
35°¢ (0.01°C/division) thermometer hung free imnside the chamber close
to the end window, but not in the direct light path.

Relative humidity (RH) was measured using a Brady array (Thunder
Scientific). The response in volts (V) was converted to percent RH, using
the calibration function supplied by the manufacturer.

Hydrocarbons (HC) were monitored by gas chromatography with flame
ionization detection (GC-FID), using the columns and methods develcped
by Stephens (Stephens and Burleson 1969, Stephens 1973). Methane and
Cy hydrocarbons were analyzed using a 5 ft Poropak N Columm, C3-Cg HC's
using a 36 ft 2,4-dimethyl sulfolane column, and aromatics and oxygenates
using a special three-part column. Cxygenates were also monitored using a
10 ft Carbowax 600 column. The chromatographic technique for the analysis
of the nitriles is discussed below. Each GC was calibrated frequently
using specially prepared samples (Stephens and Burlesom 1969). Computer
processing of the data includes calculation of the concentration in ppbC
for each data point. The data obtained have not been corrected for losses
due to sampling from the chamber.

Experimental Procedures. Following each experiment in this program,

the glass chamber was flushed with dry air provided by the SAPRC air puri-
fication system (Doyle et al. 1977) for about two hours at a flow of ~12
cfm. The chamber was then flushed with humidified pure air for about
one hour just prior to the start of a run to achieve the desired initial
RH. The temperature of the chamber prior to turning om the lamps was
adjusted to the operating temperature anticipated during the irradiation by
means of infrared lamps. During all fiushing procedures, the two sonic
pumps were in operation to provide maximum release of materials from the

chamber walls.
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The matrix air used during the flushing procedure and for the final
fill for the experiment generally contained less than a total 60 ppbC of
all hydrocarbons except methane, which was typilcally at a concentration
between 550-850 ppb (Doyle et al. 1977). After completion of filling,
analysis of the matrix air prior to injections showed somewhat higher
hydrocarbon values due to off-gassing from the chamber walls, but generally
these values were less than 200 ppbC nonmethane hydrocarbon.

Following flushing, starting materials were injected using 100-ml
precision bore syringes or micropipettes or by flushing the contents of a
bulb containing the desired amount of the nitrile into the chamber by a
stream of Ny and rapid mixing was obtained by brief (~5 minutes) use of
the sonic pumps. During the run, the sample temperature was controlled at
305 + 2 K by means of a variable air flow past the chamber walls.

Development of Gas Chromatographic Techniques for the Analysis of

the Nitriles CHqCN and CoHsCN. The chromatographic analysis technique

previously employed in these laboratories for the studies of the atmospheric
chemistry of higher molecular weight amines and alcohol amines was based on
Tenax trapping (Pitts et al. 1978). This is not suitable for the low
molecular weight nitriles and amines because of their low breakthrough
volumes on Tenax (Brown and Purnell 1979). On the other hand, the chroma-
tographic system used for the simple oxygenate analysis, employing cryogenic
trapping to concentrate the sample, and columns packed with 5 to 10% Car-
bowax-600 (C~600) on Firebrick, was also not satisfactory, since unaccept-
ably broad and assymetrical peaks were obtained when the nitriles were
injected.

An attempt was made to correct this problem with the C~600 gas chro-
matographic system by employing an all-glass column and glass-lined metal
tubes in the sample concentration trap and injection system, but unsatis-
factory peak shapes occurred. Finally, we used the column previously
employed on the alcohol amines analysis (10 ft x 2 mm ID glass column
packed with 4% Carbowax of 20-M/0.8% KOH on Carbopack B), but with the
glass-lined sample-concentration trap and injection system developed for
the C~600 system. This column gave excellent peak shapes and separation
for the nitriles, and was consequently used for the studies of these com-

pounds.

47



Results. Experiments were carried out imn the ~6400-1iter chamber to
determine the dark decay rates of acetonitrile and propicnitrile in pure
air in the presence and absence of O3 and NOg-. These consisted of the
following: (1) injection of ~100 ppb of each nitrile into an atmosphere
of pure air, and monitoring its decay; (2) injection of 1.5 ppm of O3
into the chamber where ~100 ppb of each nitrile has already been injected;
and (3) injection of ~0.5 ppm of NOy into the chamber containing ~100
ppb of each nitrile and ~1.5 ppm of 03

The purpose of the third experiment was to determine if the nitriles
react with the nitrate (NO3) radical which is formed from the reaction cof
03 with NOg. This possibility had to be examined because we have previ-
ously shown (Carter et al. 1981) that reaction with the NOj radical is a
significant atmospheric degradation pathway of phenolic compounds.

Figure 11 shows the concentrations of the two nitriles, as measured
by gas chromatography, as a function of time in the environmental chamber.
After the'injection of ~1.5 ppm 03 (at 2.1 hours), the ozone concentra-
tions were continuously monitored with a Dasibi Model 1003 instrument which
sampled at a rate of 0.60 liter min~!. THence from 2.1 hours onward, the
calculated dilution rate due solely to sampling was 0.0056 hr-l. However,
transfer of air due to ambient temperature and pressure variations also
causes dilution of the contents of the chamber, so this calculated dilution
rate must be considered a lower limit.

Least squares analysis of the data shown in Figure 11 yields the fol-

lowing loss rates of the two nitriles for the time period > 2.1 hours:

CHyCN:  -d1n[CH3CN]/dt = 0.00915 + 0.00614 hr™!
and

CoHsCN: -dln{C,Hs5CN]/dt = 0.00627 + 0.00469 hr™*

where the indicated errors are the single standard derivations. These
loss rates in the presence of ~1.5 ppm 03 or of ~0.5 ppm NO3 are, within
the experimental uncertainties, identical to the expected dilution rate due
to sampling and chamber-to-room gas transfer.

No significant decay of either nitrile, other than that which can be
attributed to dilution due to sampling or chamber leakage, was thus observed

under any of the conditioms employed. Thus, removal of these simple
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Figure 11. Dark decays of CH3CN and CpH5CN in pure air, in the

presence of 03, and in the presence of 03 + NO,.
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nitriles (CH3CN and CoH5CN) by surface absorption, by reaction with O3,
or by reaction with NO3, the radical will be negligible under atmespheric
conditions.

From these observed nitrile loss rates in the 6400-liter environmental
chamber, upper limits to their rate constants for reaction with O3 can
readily be calculated (using a maximum loss rate of the least squares
loss rate plus two standard deviations, and allowing for losses due to

sampling [0.0056 hr~1]):

05 + CH3CN; k<1.5x 10719 cn3 molecule™! sec™!
and

03 + CoHsCN; k<1.0x 1019 cu? molecule ! sec™!
at 299 + 1 K.

For acrylonitrile (CH=CHCN), an upper limit to the ozone reaction
rate constant has recently been determined (Atkinson et al. 1981) from
the decay of 03 in the presence and absence of CHp=CHCN to be k¥ < 1.0 x
10-19 cm3 molecule™l sec! at 296 + 2 K.

In order to determine the loss rates of the nitriles due to photolysis
~200 ppb of CH3CN and ~100 ppb of CpH5CN were irradiated in pure dry air
with ~20-25 ppb of neopentane and n-butane added as tracers to monitor
chamber OH radical levels.

The data are shown graphically in Figure 12 as plots of the nitrile
concentrations against irradiation time, and as in([neopentanel]/[n-butanel)
versus irradiation time. Upon irradiation, both the nitriles and the two
alkape tracers were observed to disappear at rates somewhat higher than
anticipated from the sampling rates.

From least squares analysis of the data the disappearance rates ob~—

tained are:

_dln[neopentanel/dt = (1.21 + 0.02) x 1073 min~!
(2.19 + 0.04) x 1073 min~!
(1.09 + 0.09) x 1073 min~!

+
(0.88 + 0.06) x 1073 min~!

—dln[n-butane]/dt
~d1n[CH3CN]/dt
~d1n[CoH5CN] /dt

Il

The differing disappearance rates of neopentane and n-butane implies

the presence of OH radicals from the chamber radical source {see Sectiom IV
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for a detailed discussion of these chamber radical sources). The OH radi-
cal concentration is most accurately determined from analysis of the neo-—
pentane/n-butane concentration ratio data (Atkinson et al. 1978), since
this procedure eliminates gas chromatographic sample size differences.
From least squares analysis of the 1n{ [neopentane]/[n-butane]) versus
irradiation time data (Figure 12), and using [k(OH + n-butane)-k{(0H +
neopentane) = 1.88 x 10712 cp3 molecule—)l sec~! (Atkinson et al. 1978),
the derived OH radical concentration during the irradiation is [OH] = (8.6 %
0.4) x 109 cp~3. With this radical level the disappearance rates of
neopentane and n-butane due solely to reaction with OH radicals are then
calculated to be 0.44 x 103 and 1.39 x 1073 min‘l, respectively. Com-
parison of these calculated OH radical reaction disappearance rates with
the observed values leads to estimated loss rates due to sampling and
chamber air exchange with room air of 7.7 x 1074 and 8.0 x 1074 min_l,
from the neopentane and n-butane data, respectively. Since these are in
excellent agreement, it appears that the chamber dilution rate was 8 X 10™4
nin~l.

This estimated dilution rate of 8 x 10=% min—1

is very similar to
the observed nitrile disappearance rates of 1.09 x 10-3 (CH3CN) and 8.8 x
10-4 (CoH5CN) min"l, showing that photolysis and OH radical radical reac-
tions are essentially megligible under these conditiomns.

To further investigate the atmospheric reactions of the two nitriles
CH3CN and CpHgCN, an irradiation of a NOy (NOjpipial = 0-25 ppms NO2 ipitial
= 0.10 ppm)-nitrile (~2.0 ppm each)-air mixture, with neopentane and n-
butane again added (at ~90-100 ppb) as OH radical tracers, was carried
out.

The data are shown in Figure 13, plotted as in Figure 12, and from
least squares analyses, the disappearance rates during the drradiatiom

were:
(9.0 + 0.3) x 107% min~1

(1.16 + 0.04) x 1073 min~1
(4.8 + 1.4) x 10=% pig-l

-dln[neopentanel]/dt
~dinin~butanel/dt
~d1n[CH4CN]/dt

I

-dln[CyH5CN] /4t (4.9 + 0.6) x 107% min~!

By an analysis analogous to that for the data shown previously in Figure

12, the OH radical concentration during the irradiation was 2.5 x 100 cn~3.
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This OH radical concentration leads to disappearance rates due to OH radi-
cal reaction of 1.3 x 10~% and 4.1 x 10~% min~! for neopentane and n-
butane, respectively. This yields, by comparison with the observed disap-—
pearance rates, a dilution rate of 7.7 x 10~% min~! and 7.5 x 1074 min~!
from the neopentane and n-butane data, respectively.

The two nitriles were observed to have disappearance rates less than
this estimated dilution rate, and hence no evidence of photolytic or chemi-
cal reaction loss rates could be obtained, in agreement with the nitrile-
pure air photolysis.

To obtain further quantitative information concerning OH radical
reaction rate constants, absolute rate constants were determined using the
flash photolysis—resonance fluorescence technique available at SAPRC, as

described below.

B. Determination of Absolute Rate Constants for the Reaction of OH Radicals

with Nitriles

Experimental. The apparatus and techniques used have been described

previously (Harris et al. 1980), hence only a brief description will be
given here. Hydroxyl radicals are produced by the pulsed vacuum ultraviolet
photolysis of H90 at wavelengths A > 115 nm (Mg¥j cut—off) and their
concentration monitored as a function of time after the flash by resomance
fluorescence. The reaction vessel is a Pyrex cylinder, 20 cm in length and
12 ¢m in diazmeter, fitted with two quartz windows at right angles to one
another. The flash lamp is operated at discharge energies of 30-120 joules
per flash and repetition times of one flash every three seconds.

The OH resonance radiation is produced by a 2450 MHz microwave dis-—
charge through a flow of 3% Hp0 in argom at ~1 torr total pressure. The
radiation from the resonance lamp is focused into the reaction vessel at
right angles to the flash beam. Resonance fluorescence from the hydroxyl
radicals is observed at right angles to both the flash beam and the resonance
radiation by a cooled EMI 9659QA photomultiplier tube fitted with an inter-
ference filter with a center wavelength of 308.9 nm and a half-band band-
width of 2.0 nm. This interference filter transmits mainly the 306.4 nm
band of OH(AZZ+, vi =0 > X2H, v" = Q). The intersection of the aper-

ture of the detection system and the resonance radiation beam defines a
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fluorescence viewing zone of approximately 2 cm cross section at the center
of the reaction vessel. This region is well separated from the walls, thus
minimizing wall losses of OH radicals. Signals are obtained by photon
counting in conjunction with a Nuclear Data ND-2400 multichannel analyzer
operated in the multichannel scaling mode.

The reaction cell is enclosed in a furnace, the temperature of which
can be held constant to better than +1 K over the temperature range 295-475
K, and the gas temperature is measured by a Chromel/Alumel thermocouple
mounted inside the reaction vessel but clear of the fluorescence viewing
zZones

All experiments are carried out under flow conditions so that the
gas mixture in the reaction vessel is replenished every few flashes to
avoid the accumulation of photolysis or reaction products and to minimize
problems associated with adsorption of the reactants on the reaction vessel
walls. The partial pressure of H90 in the reaction cell typically ranged
from 0.0l to 0.03 torr. Reactant concentrations were controlled by satur-
ating a known fraction of the argon diluent gas flow with the nitrile at
298 K (CH3CN and CoHs5CN) or at 228 X (CHp=CHCN). The nitrile partial
pressures in this fraction of the argon flow were measured by spectropho-
tometry in the IR or UV (CH3CN: CN stretch at 2280 cm'l, CH3CH,CN: CH
stretch at 3010 cm~l, both using a Perkin-Elmer 283 IR spectrometer;
CHp=CHCN at 207 nm using a Cary 15 UV-visible spectrophotometer). The
systems were calibrated by measuring the optical absorption of known pres-
sures of the nitriles as determined by an MKS Baratron capacitance mano-
meter. All gas flows were monitored with calibrated flow meters and the
gases were premixed and thermally equilibrated before entering the reaction
vessel.

Results. The reactions of OH radicals with acetonitrile, propionitrile
and acrylonitrile were studied over the temperature range 298 to 424 K,
.typically at a total pressure of 50 torr argon. Under the experimental
conditions employed the pseudo-first order decays of the OH radical concen-
trations following production in the flash are given by the integrated rate
expression

(OH] S,

[OH]¢  S¢ exp [ (kg + kinitrile]) (t~ty)]
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where [OH], and [OH]y, Sy and Sy are the OH concentrations and resomance
fluorescence signal intensities at times t, and t, respectively; k, is
the first order removal rate constant for OH radicals in the absence of
added reactant (attributed primarily to diffusion of OH out of the viewing
zone and to reaction with impurities) and k is the rate constant for the

reaction
0H + nitrile > products

In all experiments, exponential decays of the resonance fluorescence
signal were observed and the measured pseudo-first order decay rates were
were found to depend lipearly on the nitrile concentratiou.

Figures 14 te 16 show plots of the OH radical decay rate against
reactant concentration for CH3CN, CpH5CN and CHp=CHCN, respectively,
at the temperatures studied. In the case of the acetonitrile reaction, no
significant variation of the rate of reaction with hydroxyl radicals was
observed in the accessible temperature range and the data for all three
temperatures studied at 50 torr total pressure are fitted by the single
line so labelled in Figure 16.

Table 10 lists the rate constants k obtained by least squares analysis
of the data in Figures 14 to 16. 1In the case of acrylomitrile decay rates
were also measured at total pressures of 100 and 500 torr argon at 298 K.
As can be seen from Figure 16 and Table 10, the rate constant was ~18%
higher at the highest pressure indicating that the reaction proceeds par-
tially or entirely via an addition mechanism and that at room temperature
the reaction is in its fall-off region between second order and third order
kinetics over the pressure range studied.

The Arrhenius expressions obtained from least squares analyses of
the data in Table 10 are given in Table 11 and Figure 17 shows the data for
CH4CN and CpHsCN plotted in Arrhenius form. The error bars in Figure
17 represent three times the standard deviation of slopes in Figures 14
and 15, but exclude possible systematic errors contributing to the estimated
overall errors listed in Table 10.

Discussion. Variation of the flash energy by a factor of 2 and 4,
and hence of the concentration of primary and secondary radicals by this

amount, had no observable effect on rates of decay of hydroxyl radicals in

56



500+

400+

300+~

200+

DECAY RATE (sec™)

100+

I | 1 I

! 2 3 4.x10'°
[CH3CN] MOLECULES cm™3

Figure 14. Observed first-order decay rates of OH radicals due to reaction
with CH3CN at three temperatures.
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Figure 15. Observed first-order decay rates of OH radicals due to
reaction with C,H5CN at four temperatures.
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First-order decay rates of OH radicals due to reaction
with CH,=CHCN at 298 K (0), 350 K (A, 424 K () at 50
torr total pressure and at 298 K (®) at 500 torr total
pressure of argon.
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Table 10. Rate Constants for the Reactions of OH Radicals with
Acetonitrile, Propionitrile and Acrylonitrile

1&

Reactant Temperature 1013 k
K cmSmolecule~lsec™
Acetonitrile 297.2 0.494 + 0.06
348.0 0.62 + 0.07
423.8 1.05 + 0.15
Propionitrile 298.2 1.94 + 0.20
350.8 2.33 + 0.25
384.0 3.62 + 0.36
423.0 4.14 + 0.40
Acrylonitrile 299.0 40.6 + 4.1
349.6 40.4 + 4.1
422.5 40.2 + 4.0
298.70 43.2 + 4.3
298.7¢ 48.0 + 5.0

aThe indicated error limits are the estimated overall error limits and
include the least square standard deviations as well as the estimated
accuracy limits of flow meter calibrations, pressure measurements, etc.

bTotal pressure 100 torr argon.
CTotal pressure 500 torr argon.

Table 11. Arrhenius Parameters for the Reactions of OH Radicals with
Acetonitrile, Prcpionitrile and Acrylonitrile

Reactant 1013 2 E
emdmolecule lsec! cal mole~la
Acetonitrile 5.86 1500 + 250
Propionitrile 26.9 1590 + 350
Acrylonitrile 40.4 + 0.45P -

4The indicated errors for the Arrhenius activation energies are the
estimated overall error limits.

bsQ torr total pressure argon. No observable temperature dependence.
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Figure 17. Arrhenius plot.of log k against 1000/T (K) for the

reaction of OH radicals with CH3CN and C,Hg5CN.
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these experiments. This strongly suggests that interference from secondary
reactions, or from reactions of OH with products of the photolysis of the
reactants, are negligible.

Furthermore, the rates of the reactions of OH with CH3CN and CoH5CN
exhibit no dependence upon total pressure and hence the rate constants
reported here are applicable to the atmosphere. These may be used to
calculate lifetimes due to reaction with OH radicals of ~160 days, ~40
days and ~2 days for CH3CN, CpH5CN and CHo=CHCN, respectively, at 298 K,
assuming an atmospheric OH radical concentration of ~1 x 10% cm™3. Thus,
from these data and the data obtained from the environmental chamber stu-
dies, it is obvious that the major atmospheric loss process for these
nitriles is reaction with the OH radical, with CH3CN and CpHs5CN being
less reactive than ethane, but with acrylonitrile reacting at a significant

rate under atmospheric conditiomns.

C. Effect of Added Ammoniz on NO,.-Air and NO,—-Air-HNOg Irradiatioms

Since low levels of NHj3 are expected to be emitted in the thermal
ammonia injection processes, it is of interest to ascertain the effects of
this emitted NH3 on photochemical air pollution. The simplest and most
unambiguously interpreted photochemical system is the irradiated NO-NOg9-
air system with added propene/propane as a radical trace (see Sectiom IV).

Accordingly, two irradiations were carried out using the SAPRC ~40,000-
liter volume outdoor Teflon chamber under dual-mcde conditions. These
irradiations consisted of (a) an NO-NOj-propeme-propane-air irradiatiom
with added NH3 in one side of the dual-mode chamber, and (b) an NO-NOs-
propene-propane~HNO3-air irradiation with added XNH3 1in ome side of the
dual-mode chamber. The experimental techniques and results are discussed
below.

Experimental. The outdoor chamber, constructed from Teflon f£ilm, has

an initial volume of about 40 m3 and can be divided into two identical
compartments for the purpcse of conducting parallel experiments {dual
chamber mode) (Figure 18). Teflon was chosen because of its chemical
inertness, its low permeability to most chemical species at low concentra-
tions, and its excellent transmission properties. The large volume of the

chamber, about 40 15 when fully inflated, allows amounts of aerosol to be

62



¥

siajaw 20

+

sI9peW G'Z

* 1aqueyo UOTFSL I00PIN0 I9ITT-000°0% D¥AVS

SW-29 ANV 29
3NiT 440 OL

1

8T °an3T4

NVA NI

SLNIWNYLSNI Ol

-

IATYA ONIHOLIMS

V= sJiajaw J

r

[ |

| il

\

™~

7

H3IGWVHD
\. 3HL Q0H
OL 13N

a1044v0s

140d

<L
-z
7
] | ONITdWVS
aNv
\ NOILONQOY LN

Y
V

WOIHL S3HONI 20070 W4 NOTd43d

H3IA0D YovId

1H0ddNS 0L 3Wvdd TTvl3W

SINIWLHVIWOD OML OLNI
H3IAWVHO 3QIAIQ O1 S3did NOHILSVD

63



generated which are sufficient for complete chemical analysis even for
sub-ppm initial concentrations of added pollutants. The large volume also
permits gas and aerosol momitoring instruments to be operated continuously
throughout the duration of long experiments. Sampling by gas and aerosol
monitoring instruments does not affect concentrations because the flexible
chamber collapses as air is withdrawn.

The outdoor chamber is constructed of FEP Teflon film sheets (nine
panels, each about 30 ft x 60 in x 0.002 in). The panels are heat-sealed
together and the seams are externally reinforced with Mylar tape. The
chamber is supported by plastic coated wires running across a 25 ft x 20
ft pipe frame held two feet off the ground in order to allow air circu-
lation under the chamber, and is held on the frame by a net commected to
the frame by a system of ropes (Figure 18). Wind action om the flexible
chamber and the temperature gradient within the chamber are sufficient to
ensure adequate mixing during an experiment.

The chamber is immediately adjacent to the ARB Mobile Laboratory,
thus allowing continuous monitoring of ambient temperature, relative humid-
ity, and solar radiation intensity during the runs. Fach compartment of
+he chamber has an 8 in x 10 in opening for introduction of ambient or
pure air and initial reactants as well as for aerosol sampling during the
course and at the end of the experiment.

Monitoring instruments are housed in an air conditioned building and
are connected to each chamber compartment through a Pyrex sampling manifold
and a 30 ft, 7/16 in i.d. FEP Teflon sampling line equipped with a switch-
ing valve. The pollutant transit time from the chamber compartments to
the instruments is about 30 seconds.

During a typical run, the following parameters are monitored: NO,
N0, NO, (Bendix chemiluminescence instrument), 03 {Bendix chemilumnines—
cence instrument), CO, hydrocarbon (gas chromatography), peroxacetyl ni-
trate (electron capture gas chromatography), condensation nuclei (Environ-
mental One counter), light scattering (MRI integrating nephelometer),
aerosol size distribution (TSI electrical mobility analyzer and Climet
optical particle counter), temperature and dew point.

Changes in solar radiation intensity and spectral distribution are

measured using an EG&G integrating spectral radiometer.
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Experimental Procedure. The procedure for these runs was as follows.

The undivided bag was flushed with pure air for several hours, covered with
an opaque cover and then filled with pure air (Doyle et al. 1977) at ~30%
RH. NO, NOs, propene, propane and, for the irradiation involving nitric
acid, HNO3 were injected into the undivided bag. After mixing, the bag
was then divided into two compartments (sides A and B) and NH3 injected
into side A sufficient to yield a concentration of ~1 ppm.

The reaction bag was then uncovered and the irradiation carried out
for two hours.

Results. For the irradiations carried out, Table 12 gives the initial
conditions, Figure 19 and 20 show plots of the log of the propane/propene
ratio from which the hydroxyl radical levels are derived (see Section IV),
and Table 13 summarizes the hydroxyl radical levels calculated from the
slopes of those plots. As seen from Tables 13 and Figure 19 for the irra-
diated NO-NOjz-air mixture with added NH3 on side A (Run 2), the two sides
of the irradiated bag behaved essentially identically, although there
was a somewhat higher particulate burden on the added ammonia side, as
expected. For the irradiated NO-NO9-HNO3-air system with and without
added NH3 (Run 3), the data (Table 13 and Figure 20) again show that,
within the experimental errors the chemistry occurring is identical, as
evident, for example, by the identical hydrocarbon decay rates in sides A
and B (Figure 20).

Table 12. Initial Concentrations (ppm) for the Added NH3 Irradiatioms

Initial Concentration (ppm)

Reactant Run 2 Run 3
NO 0.366 0.399
N0, 0.150 0.137
Propane 0.0102 0.0107
Propene 0.008 0.009
HNO3 - ~0.5
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Figure 19. Plots of 1n([propane]/[propene]) against irradiation time for
NOx—air (side B) and NOy-NHz-alr (side A) mixtures with added
propane and propene tracers.
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Figure 20. Plots of In([propane]/[propene]) against irradiation time for
NO-HNO3z-air (side B) and NO-NH3-HNO3-air (side A) mixtures
with added propane and propene tracers.
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Furthermore, since side A (with added NH3) had, as expected, substantially
higher particulate levels (~50-80 pm3 cm~3 in side A versus 0-2 pm3 em™3
in side B), it is obvious that the presence of particulates had no effect on
the OH radical concentration. As a control experiment, prior to the added
NH3 irradiations, an NO~NOg9-air irradiation in the eantire (undivided)
bag (Run 1) was carried out. As seen from Table 13, the radical levels
were, within the analytical accuracy, identical to those obtained in the
divided bag with and without added NH3.

These data imply that: (a) the addition of NHj has a negligible
effect on radical levels, NO to NOp conversion and NOy loss in irradiated
NOy~hydrocarbon-air systems and (b) the expected increased particulate
burden associated with NH3 emissions (due to NH3 + HNO3 - NH4+NO3_) also
has no observable effect on radical levels, NO to NO, conversion or NO,

losse.

Table 13. Hydroxyl Radical Concentrations in Outdoor NOy,~Air Irradiations

a
Run Conditions OH Concentration, Radical cm
No. Side A Side B
1 Undivided bag ———— 0.93 x 10°
NO-NOg-air
2 Divided bag 1.1 x 106 1.1 x 106
NO-NOj-air
~1 ppm NH3 side A
3 Divided bag (1.2 + 0.2) x 100 (1.0 + 0.2) x 10°

NO-NQ9-HNOg-aix
~1 ppm NH3 side A

2Calculated from the formula
[oH] = (kz—kl)‘ldln([propane]/[propene])/dt,
where ki and kp are rate constants for the reaction of OH with propane

and propene, respectively (Atkinson et al., 1979).
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ITI. AN EXPERIMENTAL INVESTIGATION OF OFFGASSING OF NITROGENOUS
COMPOUNDS IN THE SAPRC 5800-LITER CHAMBER

For the past several years, under funding from the California Air
Resources Board and other agencies, we have been studying the effects
of a wvariety of physical parameters on the formation of simulated photo-
chemical smog. In a previous SAPRC-ARB chamber program (Contract No.
A7-175-30), a series of experiments were carried out in the 5800-liter
evacuable chamber to determine the effects of temperature on smog formation.
These experiments involved irradiations of surrogate hydrocarbon-NO,~air
mixtures and (for control purposes) alkane-NOy-air mixtures in the 5800-
liter evacuable chamber at 282, 303 and 322 K under controlled conditions,
including a constant water concentration of 5 x 103 ppm. The results of
those experiments indicated that radical levels and ozone yields increase
significantly as the temperature increased. Furthermore, for most of the
runs carried out at 323 K, the total NO; consumption rates were consider-
ably less than expected based on the known NOy removal reactiomns, and in
one experiment the total monitored NOy levels actually increased. It is
not clear how such observations can be accounted for by homogeneous gas
phase chemical processes, and the possibility of their being due entirely
to heterogeneous or chamber effects cannct be eliminated.

Clearly, before these and other evacuable chamber irradiations can be
reliably used for model validation or for assessing the effects of wvarious
parameters on smog formation, the role of chamber effects in influencing
such data must be elucidated. In Section IV of this report, results of an
extensive series of experiments aimed at studying chamber effects related
to radical initiation are described. 1In this section, results of prelimi-
nary and exploratory experiments aimed at studying NO, offgassing in the
SAPRC 5800~liter evacuable chamber are described.

Development of Improved NO-NO,-HNO3 Continuous Analysis Techniques.

It is now recognized that HNO3 can be converted to NO by the molybdenum
converters employed in commercial NO-NO, analyzers (Winer et al. 1974,
Spicer and Miller 1974, Joseph and Spicer 1978). Thus, providing that
HNO3 is not removed by the sample lines, the instrumental NO,-NO readings

will include HNO3, as well as peroxyacetyl nitrate (PAN), organic nitrates

69




etc., along with NOp levels. In order that the NOy data in this study
be better characterized, an investigation was first carried out to determine
the extent of HNO3 interference, and whether this inference could be used
as a basis for a reliable HNOj monitoring technique.

Several experiments were performed which confirmed the results of
Joseph and Spicer (1978) that cartridges packed with nylon wool can eifi-
ciently remove HNO3 from the gas sample stream without affecting NO,
NOo, or PAN levels. These nylon filters were then used to show that al-
though the Teflon sample lines employed in our past NO-NOg analyses ef-
fectively removed HNO3 under conditioms of relatively low levels of NOy
(< 1 ppm), HNOj interference became significant under conditions where
with higher NOy concentrations were employed. It is also possible that
the sample lines become less efficient in removing HNO3 at higher temper-
atures, but this aspect was not tested. Therefore, in order to remove
any ambiguities in our NOy data due to the variable efficiencies of the
sample lines in removing HNO3 prior to its entering the molybdenum conver-
ter, our NO-NOy-analysis procedures were modified by the routine incorpor-
ation of nylon filters in the NO-NOy sample line, with these filters being
replaced at periodic intervals.

A considerable amount of effort was expended in an attempt to develop
a reliable continuous HNO3 analyzer based on modified chemiluminescence
NO-NO, analyzers such as those described by Kelly et al. (1979) and by
Joseph and Spicer (1978). Several modifications of a commercial TECO
14B/E instrument were carried out. In all cases, the molybdenum converter
was removed from the instrument housing and placed as close to the chamber
as possible in order to minimize HNO3 losses on sample lines.

In the first configuration tried, shown in Figure 21la, the solenoid
selected whether the flow went through the nylon filter ("NC" mode) or
bypassed the filter ("NOy" mode), prior to entering the converter, allow-—
ing (in principle) HNO3 to be read as "NOy", i.e. the difference between
the "NO," and the "NO" channel. However, this configuration was mnot suc-—
cessful; when HNO3 was in the chamber, both "NO," and "NO" readings were
identical in the automatic (alternating) mode, despite the fact that the
readings for a continuous flow through the filter ("NO" manual mode) were

considerably less than when the flow continuously bypassed the filter
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("NO4" manual mode). It was also observed that it required more than five
to 10 minutes for HNO3 to attain equilibrium with respect to absorption
and desorption on the sample line, which is far longer than the 30-second
alternating modes of the NO-NOy analyses.

Attempts were made to avoid this HNOj3 absorption/desorption problem
by converting the HNO3 to NOj using heated glass beads prior to its enter—
ing the common sample line leading to the molybdenum converter. However,
despite the fact that Kelly et al. (1979) apparently were successful in
using heated glass beads as an HNO3 to NOp converter, we found that the
glass beads irreproducibly adsorbed and/or destroyed NO, and HNO3, and
after several attempts to correct this by cleaning or conditioning them,
their use was abandoned.

The most successful configuration tried is shown in Figure 21b. Imn
this case the common sample line was eliminated by employing a second
molybdenum converter (taken from another TECO NO-NOy instrument in our
laboratory) to convert the HNO3 to NO, with a continuous gas flow through
both the unfiltered and filtered converter being achieved by using two
solenoids simultaneously switched to select which gas flow goes toc the
detector and which is discarded. This configuration eliminated the problem
caused by HNOy absorption and desorption, and the readings obtained on
the automatic (alternating) mode were found to be consistent with those in
the manual modes, with the unfiltered channel giving appropriately higher
readings than the filtered chanmnel when HNO3 was present in the gas being
sampled. However, it was found that the output of the two converters gave
different readings when the gas being sampled contained no HNC3 or when
no nylon filters were employed; and when the nylon filter was switched from
one converter to the other, different results were obtained. These discrep-
ancies generally amounted to 10 to 20% of the total NOy and appeared to
be worse when the gas being sampled was humidified. This problem is prob-
ably inherent in the use of molybdenum converters for NOy monitoring,
and all NOy data obtained using this technique must be considered to be
uncertain by at least 10 to 20%.

Chamber Offgassing Experiments. Two sets of offgassing experiments

were conducted. One set was carried out with the chamber in a relatively

contaminated condition following a series of dark experiments which involved
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injecting O3 (0.1-1 ppm), NOo (5-10 ppm), phenols and other aromatics
(~0.1 ppm) and alkenes (~0.1 ppm) in 1 atm air in the chamber (Carter
et al. 1981). The other set followed an overnight evacuated bakeout (< 104
torr at 366 K) of the chamber. 1In both sets of experiments, the chamber was
filled with pure air at ~5% RH and oxides of nitrogen were monitored using
both the modified (see Figure 21b) and an unmodified TECO NO-NO; analyzer.
The chamber temperature was held first at ~303 K, then at ~328 K, and
finally at ~363 K. At the highest temperature, gas samples were taken for
gas chromatographic analysis of organics.

Additional experiments were carried out utilizing the capability of
our differential UV-visible spectrometer (DUVVS) interfaced to the chamber
(see Figure 22) to monitor the possible formation of nitrous acid (HONO).
This system has been used previously in our long path studies of trace
species in the ambient air, and is described in detail elsewhere (Platt et
al. 1980a,b). For this study, a 75 watt xenon high pressure point source
arc was mounted at the solar simulator end of the chamber, with the spec—
trometer at the opposite end. Two flat mirrors were mounted on each end of
the chamber to achieve a five~pass, 20-meter pathlength. HONO was monitored
using its absorption bands at 365 and 348 nm, after subtraction of the NO2
absorptions at those wavelengths using a standard NOy spectrum. The detec—
tion limit of HONO with this configuration was ~20 ppb.

The offgassing rates obtained using the modified and unmodified NO-
NOy; instruments are summarized in Table 14 for experiments ecarried out
both before and after the evacuated bakeout. It can be seen that before
the evacuated bakeout, NOy offgassing occurred at 303 K and increased
dramatically as the temperature was increased. After the evacuated bakeout,
offgassing was still significant at the higher temperatures, but was a
factor of ~3 lower than before. At 303 K the NOy levels actually dec-
creased from the background present in the pure air fill, indicating that
NOy absorption onto the walls was probably occurring.

Contrary to our initial expectations, offgassing of NO» was insignifi-
cant even in the contaminated chamber, since the offgassed material consisted
primarily of NO and some nitrogenous material which was converted to NO by
the molybdenum converter, and which was trapped by nylon. This material is

probably primarily HNO3; if HONO was formed, it was at levels less than
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Table l4. Offgassing Rates (ppb hr=l) of Nitrogenous Compounds in
the SAPRC Evacuable Chamber

Unmodified TECOZ Modified TECO
NO, +
Conditions NO NO9 NOy N0,  WitrateP
Before Evacuated
Bakeout
303 K 0.3 0 0.3 0.3 0.8
328 K 2.4 0 2.4 2.4 ~10
363 K initial 78 0 78 70 140
finalC® 69 0 69 62 84
After Evacuated
Bakeout
328 K 0.7 - - — —
363 K 27 4 31 18 34

aNylon filter in line.
bNo nylon filter; "nitrate" is presumed to be HNO3.
CApproximately four hours after 363 K temperature attained.

the ~20 ppb sensitivity of the DUVVS system for most of these experiments.
HONO was only detected in one experiment in which the chamber was held at
~363 K overmight. In that run, a trace (~20 ppb) of HONO was detected
using the DUVVS system.

In order to determine the extent of offgassing of organic materials
at high temperatures, samples were taken for gas chromatographic analyses
during both of the 363 K temperature offgassing runs. A variety of chro-
matographic columns, employing both flame ionization and electron capture
detection were used. In both experiments, no significant increase in
organic material over the background levels characteristic of our pure air

were observed, even when a total carbon analyzer was employed.
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Following the offgassing determinations at ~363 K, the chamber con-
tained ~0.4 ppm of NO and ~0.2 ppm of material (presumed to be HNO3) in
the first set of experiments, and ~0.1 ppm each of NO and "HNOj3" after
the evacuated bakeout. In both cases, the mixtures were left in the cham-—
ber overnight as it cooled to ambient temperature. In both sets of ex-—
periments, the NO and HNO3 levels declined during these periods, with
the NO decreasing after the first yum by ~15% and the HNO3 decreasing by
~65% as a result of cooling the chamber from ~363 K to ~303 K (data at
303 K was not available for the second run sipce the mixture was immediately
reheated to 363 K the following day, but the initial HNO3 levels in the
reheated mixture was at least ~50% lower than the final levels omn the
previous day). It is thus apparent that the material assumed to be HNOj3
has a tendency to be reabsorbed on the walls at lower temperatures.

As has been shown in other chambers (Jeffries 1977), these experiments
demonstrate that offgassing of nitrogenous species can be significant in the
SAPRC evacuable chamber especially at elevated temperatures, and that this
offgassing is reduced, but not eliminated, by an evacuated bakeout of the
chamber. The major species offgassed appear to be NO and HNO3, with lesser
amounts of NO, being observed. The nature and chemical or physical mecha-
nism of this effect is presently unknown, but clearly it must be taken
into account in the analysis of data from runs carried out at elevated

temperatures in chambers with Teflon coated interiors.
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Iv. AN EXPERIMENTAL INVESTIGATION OF CHAMBER DEPENDENT RADICAL SOURCES

An important aspect of the development of reliable computer models for
the formation of photochemical smog is their validation against smog cham-
ber data. This requires not only a complete understanding of the kinetics
and mechanisms of the chemical reactions which occur during the photooxi-
dations of part-per-million (ppm) concentrations of NOy and organics in
air, but also an adequate and quantitative understanding of major chamber
effects.

At the present time, although detailed mechanisms of the NO, photo-
oxidations of certain alkanes, alkenes and aromatics are qualitatively
or semi-quantitatively accurate, all such recent computer models have
invoked the presence of an as yet unknown source of radicals in order to
match computer-predicted time-concentration profiles with the results of
smog chamber experiments (Hendry et al. 1978, Falls and Seinfeld 1978,
Carter et al. 1979, Whittem et al. 1979, 1980; Atkinson et al. 1980).

To date, modelers have differed on how best to represent this radical
source in thelr mechanisms, although it is generally assumed to be chamber
dependent. In recent studies, Falls and Seinfeld (1978) and Whitten et al.
(1979, 1980) have used only initial nitrous acid (HONO) (presumed to be
formed heterogeneously during the injection of NO4), while Carter et al.
(1979a) and Atkinson et al. (1980) have used a constant radical flux, and
Hendry et al. (1978) have used a combination of the two. These approaches
are significantly different, since the use of initial HONO leads to a
rapidly decreasing radical flux, while a constant radical source results
in a considerably greater total radical input during a typical environmental
chamber irradiation.

Clearly, aspects of the photochemical mechanisms relating to radical
initiation and termination processes cannot be unambiguously wvalidated
using smog chamber data until this presently poorly characterized radical
source is elucidated. Despite previous studies of "dirty chamber effects"
(Wu et al. 1976; Bufalini et al. 1972, 1977), no systematic investigation
of chamber—-dependent radical sources has been reported to date. In the
present study, a series of NOy-air irradiations have been carried out

under a variety of conditions and in four environmental chambers in order
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to investigate more directly the characteristics and magnitude of this
excess radical initiation effect.

Experimental. The experiments consisted of NOy-air irradiations

carried out in four different environmental chambers employing different
light sources. Imnitial NO concentrations ranged from ~0.1 to 1.8 ppm and
initial NOy from ~0.05 to 0.5 ppm, and in order to monitor hydroxyl radical
levels, ~10 ppb each of propene and propane were included in the reacticn
mixture. Hydroxyl radical levels were determined from the rate of decrease
of the propene/propane ratio, based on the assumption that reaction with OH
is the only significant loss process for these species (see discussion)e.

Thus,
[OH] = (k21—k22)"1 dln([propanel/[propenel)/dt

where k9i and kgo are the rate constants for the reaction of OH radicals
with propene and propane, respectively (see later). The use of this ratio
technique eliminates the necessity to correct for dilution due to sample
withdrawal from the chamber and avoids errors due to differences in sample
sizes since both species are analyzed om the same gas chromatographic
column, as has been discussed previously (Atkinson et al. 1978).

The chambers and experimental techniques employed in this study were
as described below:

(1) The majority of irradiations were carried out in the SAPRC 5800-
liter evacuable, thermostatted, Teflon-coated environmental chamber equipped
with a 25 KW solar simulator (Figure 23). The characteristics and operating
procedures of this environmental chamber-solar simulator facility have been
described in detail previously (Winer et al. 1980), and only the pertinent
details will be briefly discussed here.

The solar simulator, employing a 25 KW point scurce Xenon arc, provides
a well-collimated light beam which, to a large extent, does not illuminate
the chamber walls, thus minimizing wall photochemistry. In all experiments
reported here, a 1/4 inch Pyrex pane was used to obtain a spectral distri-
bution applicable to that in the lower troposphere. The light intensity
within the chamber was routinely monitored by measuring the rate of pho-
tolysis of NOp in Np (k) by the method described by Holmes et al. (1973)

with updated rate constants (Hampson and Garvin 1978).
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Between irradiations the chamber was evacuated overnight to <._10"5
torr (Winer et al. 1980). For the majority of experiments, the chamber was
initially filled to ~10 torr with dry Nj, and then NO and NOyp were flushed
into the chamber from an ~5-liter Pyrex bulb attached to a vacuum line by
a stream of ultra-high purity nitrogen. The NO was purified by passage
through a trap containing activated Linde Molecular Sieve 13X, while NOp
was prepared by reaction of this purified NO with Oj which had also been
passed through activated Molecular Sieve 13X. After the NO, injection,
the chamber was filled to ~740 torr with purified matrix air (Doyle et al.
1977, Winer et al. 1980), and the propene and propane tracers were injected
using gas-tight all-glass syringes and were flushed into the chamber with
No.

For the 0% relative humidity (RH) runs and certain 100%Z RE rumns, spe-
cial procedures were used during the air fill. In the dry rums, the cham-
ber was filled to ~150 torr with the evaporate from liquid 05, and then
filled up to atmospheric pressure with the evaporate from liquid Nj. 1In
order to obtain water saturation in the 1007 RH, high temperature run,
the requisite quantity of liquid water was injected into the heated, evacu-
ated chamber prior to the pure air £ill. For the 100%Z RH rums at lower
temperatures, the purified matrix air was humidified at a temperature
higher than that of the chamber.

NO and NOs were monitored using continuous commercial NO-NO; ana-
lyzers fitted with a nylon filter in the sample line to remove possible
HNO3 interferences in the NOp analysis (see Section III). Although O3
was mnot expected to be formed to any measurable extent in these runs, this
was verified for most runs using a commercial UV absorption O3 monitor.
Propene, propane and background levels of other organics and CO were moni-
tored by gas chromatography (Pitts et al. 1979a), and formaldehyde was
monitored by an improved chromatropic acid method (Pitts et al. 1979%a).

(2) A more limited set of irradiations was carried out in the SAPRC
~6000-1liter all-Teflon (FEP, 2 mil thickness) chamber (Figure 24). Irra-
diation was provided by two diametrically opposed banks of 40 Sylvania
40-W BL lamps, backed by arrays of Alzak-coated reflectors. The light
intensity in the chamber was controlled by switching off sets of lights as

previously described (Darnall et al. 1981), and the light intensities for
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the various levels of illumination were monitored (Pitts et al. 1979b) by
measuring the rate of photolysis of NO9 in Ng using the quartz-tube,
continuous flow technique of Zafonte et al. (1977) .

Before each experiment, the chamber was flushed with dry purified air
(Doyle et al. 1977) for ~2 hours at a flow rate of ~12 cfm, and then with
air at the desired relative humidity for ~1 hour. All starting materials
were injected using gas—tight all-glass gas syringes and were flushed into
the chamber using dry ultra-high purity Nj. Commercially available tank
NO (Mathesom, CP grade, 99.0%) was used without further purification, and
N0y was prepared by diluting this NO with dry, pure O in a syringe. The
analytical procedures employed were the same as used for the 5800-liter
evacuable chamber runs (see above).

(3) Several irradiations were carried out in ~40,000-1iter outdoor
Teflon (FEP, 2 mil thickness) chambers with natural sunlight irradiation.
The techniques used (Section II) were generally similar to those used for
the indoor all-Teflon chamber described above, except that prior to irradi-
ation the chamber was covered with an opaque cover. The light intensity was
monitored using a UV radiometer.

(4) A few irradiations were also carried out using a 100-liter Teflon
(FEP, 2 mil thickness) bag, irradiated with an array of fluorescent lamps
yielding an NOj photolysis rate ky of 0.27 min~l. In this system NO
and NOp and the propane and propene were injected into the bag by gas-
tight, all-glass gas syringes, and the bag was then filled with ultra-high
purity dry air. The light intensity was monitored by measuring the pho-
tolysis rate of NOp in Np as described above for the indoor Teflon cham-
ber.

The physical characteristics of the four chambers employed in this
study are summarized in Table 15.

Results and Discussion. Tables 16 through 19 give the experimental

conditions and observed NO conversion rates and initial and f£inal OH radi-
cal levels for all of the experiments carried out in this study. Plots
of 1n([propanel/{propenel) vs. time, from whose slopes the hydroxyl radical
concentrations are derived, are shown in Figures 25 and 26 for several
representative runs. In general, as seen from Figures 25 and 26, for ruus

at T < 303 X, RH < 50% and [N0]/[N0p] > 1, the OH radical levels remained
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Table 17. Conditions and Selected Results for Indoor Teflon Chamber (ITC)
NOy—-Air Irradiatioms

Average [OH] Radi- d [NO]
ITC (106 Radicals- cal T dt
Run Condi- Initial em—3) Flux >60 min
No. tions?® kP RH NO NO, 0-60 >60 (ppb~  (ppb-
(min~1) (2) (ppm) (ppm) min min® min~!) min~l)
382 0.45 <10 0.334 0.578 1.5 0.5 0.02 0.005
383 0.45 <10 0.354 0.068 1.1 0.8 0.04 0.03
378 0.45 ~50 0.493 0.119 2.6 1.7 0.09 0.10
380 0.45 ~50 0.305 0.072 1.1 1.6¢ 0.08 0.01
379 A 0.45 ~50 0.098 0.222 1.8 1.3 0.16 0.12
377 B 0.45 ~50 0.373 0.114 2.1 2.4 0.14 0.37
377 C 0.45 ~50 0.266 0.098 - 1.6 0.11 0.31
377 C 0.45 ~50 0.246 0.109 - 1.6 0.12 0.36
380 D 0.35 ~50 0.312 0.076 - 1.3 0.06 0.13
380 D 0.28 ~50 0.305 0.078 - 1.1 0.05 0.09
380 D 0.2 ~50 0.300 0.080 - 0.6 0.03 0.06
381 E 0.2 ~50 0.245 0.088 - 0.7¢  0.04 0.05
380 D 0.1 ~50 0.297 0.083 - 0.6 0.03 0.07
381 0.1 ~50 0.295 0.088 0.7 0.4f  0.02 0.01

4For all runs, T = 303 K. Codes for special conditions are shown below.
A - Nonstandard initial NO and NO2 concentrations.

B - Previously unused bag.

C - Continuation of four-hour run.
D

~ Continuation of run in which light intensity was incrementally
reduced.

E - Continuation of run in which light intensity was incrementally
increased.

bkl = NO2 photolysis rate.

CUnless otherwise noted, data given are for a period of 60 minutes.
dpata are given for a period of 45 minutes.

€Data given are for 135 minutes.

fpata given are for 90 minutes.

8Data given are for 120 minutes.
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Table 18.

Conditions and Selected Results for Small (~100-liter
volume) Teflon Bag NOy,—Air Irradiations

Radical -d (w01 b

Run SourceP dt
No.2 NO NOo Average [OH] (ppb~ {ppb-

(ppm) (ppm) (109 rad-cm™3) min~1) min=1)
4-1 0.460 0.155 5.1 0.75 2,73
4-3 0.476 0.135 3.7 0.32 1.37
44 0.503 0.120 4.9 0.54 1.97
4-5 0.467 0.119 4.6 0.51 1.69
5-1 0.345 0.227 1.4 0.15 0.26
5-2 0.269 0.100 1.5 0.09 0.21

aFirst number is bag number.
out with this bag.

braiculated for t > 60 minutes.
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EC-464 NO=0.116ppm

0.8

0.6

o .
EC-440

0.4 NO=0.797ppm

tn ([PROPANE ] /[PROPENE])

| | L i |
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Figure 25. Plots of ln([propane]/[propene]) against irradiation time
for evacuable chamber runs with [NO;Jlipnitial = 0.1 ppm, and
varying initial NO concentrations.
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Figure 26. Plots of I1n([propane]/[propene]) against irradiation time
for evacuable chamber run in which O3 or NO, was injected
during the run.
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essentially constant during the two-hour irradiations, while runs where T >
303 K, RHE > 50% or [NO]/[NOp] < 1 generally had initially higher OH radical
levels which decreased to a comstant value after ~30 to 60 minutes.

It can be seen from Tables 15 through 19 that a number of repli-

cate runs were done under standard conditions [NO < 0.4 ppm, NOy = 0.1
ppm, ~50% RH (evacuable chamber and indoor Teflon chamber), < 10%Z RH
(small bags), maximum light intensity] in the various indoor chambers.
These tables show that duplicate runs give hydroxyl radical levels which
are reproducible to within * 15%Z in the evacuable chamber with the vari-
ability in the indoor Teflon chamber and between different small Teflon
bags being somewhat greater. The variability in hydroxyl radical levels in
the large outdoor chamber 1is considerably greater, with hydroxyl levels
varying by as much as a factor of three, but these can be attributed in
part to variatiomns in temperature and light intensity characteristic of
outdoor irradiations.

A comparison of average hydroxyl radical levels observed in comparable
runs performed in the four chambers is shown in Table 20. Since the light
intensity of the different chambers is in general different, a more direct
comparison can be obtained from the hydroxyl radical concentration normal-
ized by dividing by the light intensity {since the OH radical concentra-
tions were observed to be proportiomal to light intemnsity, as discussed
below). These values are also shown in Table 20. It can be seen that
the intensity-normalized hydroxyl radical levels indeed depend significantly
on the chamber employed.

It is interesting to note that the normalized OH radical levels in the
Teflon chambers vary as much or more from chamber to chamber as they do
with the size of the chamber. For example, the OH radical levels in the
ijndoor Teflon chamber are slightly lower than, or (within experimental
variability) essentially the same as, those observed in the oudoor chamber,
despite the much larger volume of the latter. In addition, the difference
between the radical levels in small Bag #5 and the large Teflon chambers is
no greater than the difference between Bag #5 and Bag #4. It should be
noted that the same roll of Teflon film was used to make all the FEP Teflon

chambers employed in this study.
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Table 20. Dependence of OH Radical Levels Observed in Comparable?
NOy—-Air Irradiations on Chamber Employed

kP éOH] [0H]/k;
Chamber (min'l) (10 cm=3) (normalized)©
Small Teflon Bag #4 0.27 bob + 0.7 3.1 + 0.6
Small Teflon Bag #5 0.27 1.4 1.0
Evacuable 0.49 2.5+ 0.2 1.0
Indoor Teflon 0.45 0.64 + 0.1 0.3 + 0.1
Outdoor Teflon ~0.3 + 0.05d 0.9 + 0.3 0.5 + 0.2

@Initial [NO] = 0.4 ppm; [NOs] = 0.1 ppm; RH < 10%Z, T = 303-308 K.
bkl = NOs photolysis rate.
CNormalized to ratio observed in the evacuable chamber runs.

dEstimated from radiometer readings using the empirical relationship
derived by Zafonte et al. (1977).

The dependence of the OH radical concentration on temperature and
relative humidity for runs in the evacuabie chamber, and on humidity for
runs in the indoor Teflon chamber is shown in Table 21 for runs with ap-
proximately the same initial NO and NO) concentrations and light inten-
sity. It can be seen that the hydroxyl radical levels increase with both
temperature and humidity. The hydroxyl radical concentrations also appear
to be more strongly affected by humidity in the Teflon chamber than in the
evacuable chamber.

The dependence of hydroxyl radical concentrations on light intensity
is shown in Figure 27, which shows plots of OH radical levels against the
light intensity (as measured by kj, the NO, photolysis rate) for the
5800~1liter evacuable and 6000-liter indoor Teflon chamber rums in which the
light intensity was varied. It can be seen that within experimental error
the radical levels are proportional to light intensity.

The effect of NO levels on the results of the evacuable chamber runs

is shown in Figure 25, which shows plots of 1n([propanel/[propenel) against
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Table 21. Dependence of OH Radical Levels Observed in Standard?@
NOy-Air Irradiations on Temperature and Relative Humidity (RH)

10_6x [OH] radical cm
Chamber T(K) <10%Z RH 50% RH 80% RH 100% R
284 1.6 2.1 4.7
Evacuable 303 2.5 A 16 > 11b 20 > 12b
323 5.7 18+ 9b 50 ~ 8b
indoor
Teflon 303 G.6 1.8

aipitial [NO] = 0.4 ppm; [NO2] = 0.1 ppm; NOp photolysis rate kj =
0.49 min~! (evacuable chamber), 0.45 (indoor Teflon chamber).

bOH radical concentrations changed throughout the run; initial and final
values given.

irradiation time for rums with a similar initial NOj concentration, but
with initial NO concentrations varying from 0.116 to 0.797 ppm. It can be
seen that the final OH radical levels (e.g., the slopes of the lines in
Figure 25) are essentially unaffected by the NO concentratiom, but that the
initial slope increases as the NO level is decreased.

The hydroxyl radical levels in the evacuable chamber runs were also
not strongly affected by NOj levels, except inm the initial stages of
irradiation, where higher NOj levels resulted in higher ipitial hydroxyl
levels. The relative insensitivity of the subsequent hydroxyl radical
levels to NOp is illustrated by Figure 26 which shows the results of
two runs in which NO9 levels were increased by a factor of 2 to 2.5,
either by direct injection of NOj; or by comversion of NO to NOjp by injec-—
tion of 03. It can be seen that the slope of the 1n([propanel/[propenel)
versus time plots, and thus the OH radical levels, are essentially un-—
changed by the sudden increase in NO3.

In order to obtain data concerning the effect of the reactant injec—
tion technique and of other experimental conditions on the radical levels,
several evacuable chamber runs were carried out using nonstandard reaction
conditions.
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The results of these are briefly summarized below (see also Table 16).

e Omne run was carried out in which NO and NOy were injected using
the syringe injection technique employed on the other chambers, instead of
the vacuum technique (see Experimental section above). The results of this
run were essentially the same as for the standard runs.

e One run was conducted in which NOp was prepared by reacting NO
with 03 in the chamber, rather than by reacting 03 with NO at high con-
centrations prior to injection into the chamber, which is the usual pro-
cedure. The resulting hydroxyl radical concentration was 35-40% lower
than the average of the standard runs; this deviation is somewhat greater
than the observed + ~15%Z variability of the standard runs.

e One run was carried out by introducing NO into the chamber ~27
hours prior to the start of the irradiation, with NOz being formed to
approximately its usual pre-irradiation value by the NO dark oxidation
reaction. In that run, the initial hydroxyl radical level was approxi-
mately 2.5 times higher than in the standard runs, with the hydroxyl
radical concentrations leveling off to values ~25% higher than those in
the standard runs. (Hydroxyl radicals levels in the standard runs were
generally reproduceable to + 15%).

e 1In order to assess the possible role of surface photochemistry,
one runm was carried out under otherwise standard conditioms with the
solar simulator beam defocussed so that more light would impinge on the
Teflon surface. The hydroxyl radical levels observed in both portiomns of
this run (i.e., at both full- and half-light intensity) were within the
range of those observed inm the full- and half-light intensity standard
TUnsSe.

® One low humidity run was carried out following an evacuated bake~
out of the chamber at 363 K. In that run the hydroxyl radical levels
were initially ~1.8 times higher than in the other low humidity rums,
though they declined, being ~28% higher by the end of the rum. In con-
trast, the hydroxyl radical levels in the other low humidity runs were
constant during the duratiom of the irradiations.

Discussion. In irradiated NOy-air mixtures, the major gas phase
reactions (Hampson and Garvin 1978, Carter et al. 1979z, Atkinson et al.

1980, Baulch et al. 1980, Atkinson and Lloyd 1980) are as follows:
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NOy +h (A> 295 nm) -~ NO + 0(3P)
0(3P) + 0y + M > 03 + M
NO + 03 > NOj + 0o

0(3P) + NOy > NO + 0y

0(3p) + N0, e NO3
NO + NO + 05 + 2 NO,
NOy + 03 + NO3 + 05
NO3 + NO + 2 NO

NOg3 + NOg - NO + NOg + 0o

=

NO3 + NO2 N50Og

N9Os5 + NOo + O3
NO3 + hv >~ NO + 03
NO3 + v > N0, + 0(3P)
03 + W+ 0y + 0(3P)
03 + W (A< 310 mm) ~ 02(lpg) + 0(lD)
o(Ip) + M(M = air) > 0(3P) + M

o(lb) + B0+ 2 oH

M
OH + NO - HONOC

HONO + hv = OH + NO

M
OH + NOp = HNO3

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)
(9

(10)

(11)
(12)
(13)
(14)
(15)
(16)

(17)

(18)

(19)

(20)

Under the conditions of the experiments described here, where significant

concentrations of NO are always present, the O3 concentrations are suf-

ficiently low that reactions (7)-(17) are of minor importance.

In parti-

cular, the OH radical input rate calculated from the above mechanism for
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conditions of a typical evacuable chamber rum where [NO] = [NO,] 1is
~4 x 1076 ppm“l min‘l, which gives rise to predicted OH radical levels
one to two orders of magnitude lower tham those actually observed.

The major additional reactioms occurring when propene and propane
are included in the reaction mixture can bde represented overall as follows

(Carter et al. 1979a, Atkinson and Lloyd 1980):

2 NO
2 09
OH + propene '—~————717§>HCH0 + CH3CHO + OH (21)
2 NO»o
and
2 NO
2 09 i
OH + propane l >H,0 + CH3COCH3 + OH (22)
v
2 NO2

Under the conditions employed in these runs, reaction of propeme with
03, o¢3p), NO3, etc., are negligible; in particular, reactiom with O3
was always < 10%, and gemnerally ~1%, of the total loss processes for
propene (Carter et al. 1979z, Atkinson and Lloyd 1980). Reaction of pro-
pene and propane with OH radicals thus results in no' net production of
radicals, but causes the conversion of two molecules of NO to NOj. At
the reactant levels employed in these runs, the rate of this conversion is
minor, being generally less than the conversion caused by the CO impurity

concentrations observed (0.5 to 4 ppm).

NO
02
OH + CO OH + COg
NO+o

Photodissociation of the oxygenated propene and propame products can lead
to radical productionm, but at the reactant levels employed in these runs,
these radical sources are also minor (Carter et al. 1979a, Atkinson and
Lloyd 1980).

The hydroxyl radical levels observed in all the rumns reported here

were significantly higher than expected from the homogeneous reactions
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discussed above. This is illustrated in Figures 28 and 29, which show
hydroxyl radical concentration-time profiles derived from the data of
a representative standard evacuable chamber run (Figure 28), and from a
representative high initial NO; concentration run (Figure 29), and com-
pares them with results of model calculations (curve A) using only the
known gas phase chemistry (Carter et al. 1979a, Atkinson et al. 1980,
Atkinson and Lloyd 1980). (It should be noted that the largest single
radical source in these calculations was formaldehyde photolysis, and the
calculations used the observed initial formaldehyde levels of 20 ppb, and 6
ppb, respectively, which are taken to be upper limits for [HCHO] given the
uncertainties associated with the chromatropic acid method.) It can be
clearly seen that the known radical sources are at least an order of
magnitude too low to account for the observed radical levels in these
runse.

As discussed in the dintroduction to this section, previous computer
modeling studies have accounted for this excess radical source either by
assuming initially present nitrous acid, whose rapid photolysis (reactiomn
19) can produce radicals at a significant rate even when only low levels of
HONO are present, or by assuming a constant radical flux whose source is
unspecified. Figures 28 and 29 show the results of model calculations
assuming (B) only initially present HONO (at levels adjusted to fit the
initial hydroxyl radical concentrations) and of calculations (C) assuming a
constant radical flux at rates adjusted to fit the final OH radical lev-
els, together with calculations (D) assuming a combination of both. 1t
can be seen that assuming only initial HONO greatly underpredicts radical
levels after the initial ~15 minutes of the run, and initial HONO can
be, at best, only a minor contributor to the observed radical source after
the first ~30 minutes of irradiation. On the other hand, using only a
constant radical flux in the calculation results in underprediction of
initial OH radical levels, especially in the high [NOZ]/[NO] runs, and
best fits to the data are obtained if some contribution due to initial HONO
is assumed. However, in terms of the overall input of radicals during a
chamber irradiation (typically > 6 hours for smog simulation rums) the

constant radical flux is by far the more important factor.
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10”8 [OH] molecule cm

Figure 28.

IRRADIATION TIME (mins)

Hydroxyl radical concentrations as a function of
irradiation time. F———l experimental data for EC-
457; [NOlinitial = 0-499 ppm, [NOzlinitial = 0.115
ppm; [propanelipitial = 0.013 ppm, [propene]initial
= 0.010 ppm; [HCHOlipitisl = 0.020 ppm, T = 303 K,
RH = 50%, NO, photolysis rate constant ki = 0.49
min~!; A -model calculations with the homogeneous
gas phase chemistry; B -model calculations with
[HONO]ipitial = 0.010 ppm; C-model calculations
with a constant OH radical flux of 0.245 ppdb min~?;
D -model calculations with [HONOlipitial = 0.010
ppm and a constant OH radical flux of 0.245 ppb

minTt.
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Figure 29. Hydroxyl radical concentrations as a function of
irradiation time. |———| experimental data for EC-
4425 A -model calculations with the homogeneous gas
phase chemistry; B -model calculations with [HONOlipitial
"= 0.050 ppm; C -model calculations with a constant OH
radical flux of 0.61 ppb min—1l; D -model calculations
with [HONO]ipitial = 0.050 ppm and a constant OH radical
flux of 0.61 ppb min—l.
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The radical flux required to fit the data for a given rum can be
estimated (without the necessity to carry out detailed model calculations)
from the fact that radical initiation and radical termination must balance.
Since the only significant radical termination processes in this system
are the reactions of OH radicals with NO and NOo (reactions 18 and 20),
and since the only major known radical initiation process is HONO photolysis

(reaction 19), then
Ry + klg[HONO] = klg[OH][NO] + kzo{OH][NOZ]

where R, is radical initiation from all sources other than HONO photolysis.
Since reactions (18) and (19) are the major reactions affecting HONO lev-

els, the above can be rearranged to yield

R, = SLHONOL . o) 0H] [¥02]

dt
Furthermore, since the photolytic half-life of HONO in these experiments
is ¢ 15 minutes, HONO is in photostationary state after the first hour.
Therefore, the radical initiation rates for t > 60 minutes in these pho-

tolyses can be estimated from the equation:
R, (t > 60 min) = kZO[OH]avg[NOZ]avg

where kg is accurately known (Hampson and Garvin 1978, Atkinson and
Lloyd 1980) and [OH]ayg and [NO2layg are experimentally determined. It
should be noted that, in general, the OH radical levels were approximately
constant after the first hour.

The radical input rates estimated in this way for the second and
subsequent hours of the various runs are summarized in Tables 16 through
19 for the various chambers. It should be noted that these rates are omne
to three orders of magnitude greater than the maximum rates of the known
homogeneous radical initiation processes such as O3 or oxygenate photolysis
(see above), and thus these values of Ry can be considered to measure the
radical flux from unknown sources. Furthermore, in runs with similar
reactant levels, and thus similar values of [NOZ]avga the calculated
radical flux is approximately proportiomal to [OH]. Thus, the dependence

of [OH] on temperature, humidity (see Table 21), light intensity (Figure
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27), and on the chamber employed (Table 20) reflect directly the corres-
ponding dependence of the radical flux on these parameters (i.e., the
unknown radical flux increases significantly with temperature and humidity,
appears to be proportional to light intensity, and is different when
different chambers are employed).

Although the hydroxyl radical levels, and thus the radical flux, were
observed to be unaffected by NO levels, the radical flux is significantly
affected by NOy levels. In particular, if the addition of NO; to the
reaction mixture does not change the OH radical levels (see Figure 26),
despite the fact that reaction with NOj is the major radical sink, then
the radical flux must be approximately proportiomnal to [NO»s].

The dependence of the calculated radical flux on second-hour average
NOy levels for the ~50%7 RH, 303 K evacuable chamber runs is shown in
Figure 30 (data for the two irradiations carried out at lower light inten-
sity (EC-457 and 458) are included, the observed radical fluxes being
corrected to be comsistent with a wvalue of k; = 0.49 min~l). The data

are fit by the regression line
Ry (ppb min~l) = kj[(0.30 + 0.06) + (2.9 + 0.3) [NO2] zyg]

(where the NO, concentration is in ppm), as shown in Figure 30. It can
be seen that although the radical flux increases with [NO2], the inter-
cept appears to be significantly greater than =zero, suggesting that the
radical source may be non-negligible, even in the absence of NO».

Insufficient data are available to determine quantitatively the
dependence of the radical source on [NO2] in the other chambers employed
or at the high and low temperatures in the evacuable chamber, but they
do appear to be positively correlated. The one exception appears to be the
T = 323 K, 507 RH runs in the evacuable chamber, where the radical source
appears to be independent of [NOs] (compare run EC-451 with runs 447 and
448 in Table 16). On the other hand, the two T = 284 K, ~50% RH runs
in the evacuable chamber (EC-452 and 455, Table 16) can be fit within
experimental error by a line with zero intercept and the same slope as
derived from the Ry vs. [NOp]l,yg regression for T = 303 K.

In principle, it may be possible to obtain some indication as to the

nature of the radical source from the rate of NO consumption observed in
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these runs. NO consumption is caused by dilution, by the reactions of
peroxy radicals (formed in the photooxidations of propene, propane, CO,
HCHO and other organic contaminants) with NO, by the dark oxidation of NO
(reaction 6), and by the formation of NO3 from the reaction of 0(3p)
with NO, (reaction 5, followed by reaction 8). This is balanced in part
by NOs to NO conversion resulting from the reaction of 0(3P) atoms with
NO» (reaction 4). If the unknown radical flux is due to formation of
HOp, as postulated by Hendry et al. (1978), then it would cause addi-
tional NO consumption due to the reaction of HO; with NO. 1If the radical
flux is due to the formation of OH, as initially postulated by Carter et
al. (1979a), then it would have no effect on NO consumption. If, however,

the radical flux is due to a process such as, for example

N0y + wall.H50 -+ wall.OH + HONO
HONO + hy - OH + NO

then the radical source would reduce the rate of NO consumption.

The observed NO conversion rates for the second hour of the evacuable

chamber runs are summarized in Table 16, along with rates calculated from
the known processes (Carter et al. 1979a, Atkinson and Lloyd 1980).
It should be noted that if there are undetected organic contaminants, the
conversion rate would be underpredicted, and thus the calculated values
should be considered to be lower limits. In general, except for the high
temperature, humidified runs, where probable contamination effects cause
the observed conversion rates to be consistently high, it can be seen that
the observed conversion rates are either approximately equal to or lower
than the calculated values. Since the NO loss rate i1s not consistently
higher than predicted, the radical source is unlikely to involve formation
of HO9 or any other radical which consumes NO, and in fact, the data appear
to be most consistent with the assumption that some net NO formation may be
involved in the radical flux.

Finally, as mentioned above, the initial hydroxyl radical 1levels
suggest that HONO may be initially present. In the runs with constant OH
radical levels, the initially present HONO must be approximately equal to
the photostationary state value; for the other runs, it is most reliably

obtained by adjusting the initial HONO and the radical flux to fit the data
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in detailed model calculations. Table 16 summarizes the initial HONO
levels which are necessary to fit the observed OH radical concentrations
for selected evacuable chamber runs. It can be seen that the apparent
initial HONO required to fit the data is quite variable, but in gemeral it
increases with temperature, humidity and NOj, with dinitial NO» having
the largest effect, at least for T < 303 K. Surprisingly, it also appears
that high levels of initial NO tend to suppress the apparent initial HONO

(compare run EC-434 with EC-445). This then rules out the reaction
NO + N0y + Hp0 » 2 HONO

in the chamber as being the source of the initial HONO.

Conclusions. The results of the experiments reported here show con-
clusively that radical input from unknown sources is an important process
in smog chamber systems, and that, in terms of the total number of radicals
produced, initial HONO is at most a minor contributor to this process.
Thus it is clear that photochemical smog models validated against chamber
data assuming only initial HONO as the radical source must be re-evaluated.
However, it is also clear that assuming only a comstant radical flux duriag
an irradiation is also an oversimplification, particularly in view of the
fact that it generally underpredicts radical levels in the initial stages
of the irradiation, and that it does not take into account the dependence
of apparent radical flux on NOj levels, which in general varies during
typical smog chamber irradiatioms.

Radical input from unknown sources is strongly influenced by both
temperature and relative humidity. This fact should be taken into account
when using smog chamber data to assess the effects of these parameters on
photochemical smog formation. In particular, the apparent strong depend-
ence of smog formationm potential om temperature reported by us previously
(Carter et al. 1979b) may be wholly or partially a result of this radical
source effect.

Radical input from unknown sources is also highly dependent on the
chamber employed. Thus, the radical source must be considered to be
another chamber effect which (like 03 wall destruction) must be measured
pericdically by appropriate control experiments in order for the data

obtained to be adequately characterized. NOy—~air dirradiatioms such as
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those described here appear to be useful in measuring this effect, and we
strongly recommend that all future experimental protocols involving smog
chamber irradiations include NOy-air irradiations among the associated
characterizations and control experiments.

Although the results of the experiments reported here are not adequate
to establish the exact mechanism causing this effect, it has given us some
indications as to its nature and allowed a number of possibilities to be
ruled out. As mentioned previously, HONO formed during NOy, injection
cannot be the only radical source, though the results of some experiments
reported here suggest that it may contribute in the initial stages of the

irradiations. It can also not be due to HONO formation from the reaction
NO + NOg + Ho0 - 2 HONO

since NO seems to have no effect on the radical flux, and indeed appears to
inhibit initial HONO levels.

The fact that the radical flux appears to be proportional to light
intensity means that contaminant offgassing cannot be a rate determining
step. In addition, the facts that (a) the radical flux depends on the
chamber employed, (b) that previously unused Teflon chambers have a signi-
ficant radical flux, (c) that the radical flux is higher in the evacuable
chamber after it is "pumped and baked" than it is following standard
evacuable chamber runs, and (d) that the flux depends on humidity, suggests
that this effect is due to a heterogeneous reaction and is not a result of
contamination. This heterogeneous reaction appears to involve NOy and
Hy0 and must involve some sort of rapid equilibrium in order to be con-—
sistent with the results reported here.

It is clear that additional experiments are required to further char-
acterize the nature of this radical source and to determine the role, if

any, of initially present HONO.
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V. EXPLORATORY LONG-PATH FT-IR STUDIES OF THE ATMOSPHERIC REACTIONS OF
MODEL PESTICIDE COMPOUNDS

Increasing attention is being focused on the environmental hazards
posed by pesticide materials and their transformation products in the
entire ecosystem, i.e., in soil, water and the atmosphere. The yearly
application of pesticide chemicals in the Umited States (Lewis and Lee
1976) presently exceeds one billion pounds and estimates of pesticide
use in California amount to as much as 20% of natiomal use. Table 22
provides recent usage levels in California along with data omn the vola-
tility of the major pesticidal compounds in use.

Recently, the California Air Resources Board has been concerned
with reactive organic gas emissions from pesticide formulations and their
possible contribution to oxidant formation in the California central
valleys (Weins 1977). Posing the most immediate and serious health hazard,
however, is the exposure of humans to specific active pesticide ingredients
and their possible photodegradation products. Thus, numerous outbreaks of
poisoning among orchard workers following use of parathion have been
reported (Spear et al. 1975, Kleinman 1963), often as a result of exposures
in the field several days after application. Parathion (I), which is one
of the most toxic pesticides, is known to yield the even more highly toxic
paraoxon (II) on irradiation or exposure to ozone. Paraoxon has been
suggested as contributing to the toxicity levels encountered in these
poisoning cases.

Although photodegradation is an effective pathway for removal of many
pesticides in air and other media, sunlight irradiation has been known to
promote "toxic synthesis" leading to products which are more toxic and
potentially more persistent in the environment than the parent compounds.
Examples are photodieldrin (IV) (Rosen et al. 1966), the photochemical
product of dieldrim (III) and the oxon analogs of the parent organophos-
phorus compounds (Crosby 1972). On irradiation in solutiom, carbaryl (V)
undergoes an elimination reaction to generate l-naphthol, other phenols and

the highly toxic and volatile methyl isocyanate (Crosby 1972, Crosby et al.
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1965). Thioethers such as demeton (a mixture of VI and VII) form sulfox-
ides (VIII and IX) that are often more powerful inhibitors of cholin~
esterases than are the parent compounds (Cook 1954, Fukuto et al. 1953).

It is obvious that knowledge of the phototransformation products of
pesticides in the environment are essential to the safe use of existing
chemicals and the introduction of new ones. While numerous studies on the
photochemistry of various pesticides have been published, the majority of
the experiments have been conducted in aqueous solutions and in other
organic solvents (Rosen 1972, Glofelty 1978). The gas phase photooxida-
tion studies conducted have employed aritifical irradiation and none have
included measures of photochemical reaction rates (Moilanen et al. 1976) .

Since the atmosphere is a possible route for significant pesticide
transport and distribution, it is important that studies include not omnly
the identification of transformation (photooxidation) products but provide
equally important kinetic information on the reactions of pesticidal
materials with the atmospherically important reactive species ozone (03)
and hydroxyl (OH) radicals. Such data are essential in providing esti-
mates of atmospheric lifetimes both in the "clean" troposphere and in urban
environments.

This exploratory work deals with the reactioms of 03 (in the dark)
and the OH radical (via photooxidation in the presence of oxides of nitro-
gen) under simulated atmospheric conditions with three model pesticide
compounds: phenyl N-methylcarbamate, trimethylphosphate and trans-1,3-

dichloropropene. The first two compounds are representative of carbamates
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Table 22. California Usage and Vapor Pressure Data for Selected Pesticides

PESTICIDE 1975 USAGE VAPOR APPROX.
IN CALIFORNTA PRESSURE SATURATION
(thousand pounds)#* (mm Hg) CONC (ppm)
25°¢
Synthetics
Methyl bromide 7,164 High (bep. 4.5 C)
D-D mixture 3,177 High (p.p. 90-115 °c)
Chloropicrin 1,902 23.8 @ 25°c 31300
DNBP 1,742 (me.p. 38-42 C)
Telone 1,366 High (b.p. 104 Cc)
Toxaphene 1,004 0.2-0.4 @ 25% 260 - 520
Carbaryl 1,002 ~5 x 1073 @ 26% 6.5
Ordram 962 8.75 x 10-3 @ 25°¢  11.5
Parathion 913 3.78 x 107> @ 20°C 0.05
Methomyl 854 5 x 107> @ 25°¢ 0.006
2,4-D, Propyleneglycol- Probably <103 @
butylether ester 805 25°¢ <l.3
Chlordane 697 10-7 @ 25°% .013
Omite 642 ?
DBCP and related
compounds 634 0.8 @ 21% 1050
Difolatan 565 Negligible (m.p.
160-161°C)
Phorate 548 8.4 x 1074 @ 25°¢C 1.1
Kelthane 509 (m-p- 78.3-79. 5°C)
Methyl parathion 494 9.7 x 10— @ 202 0.013
Dimethoate 474 8.5 x 10-6 @ 25°¢ 0.011
Endosulfan 471 No measurable VePe
at 75°C
Malathion 455 4 x 10-5 @ 30°C 0.053
DEF 427 (b.p. 150°C @
0.3 torr)
2,4-D Dimethylamine salt 427 (m.p. 85- 87 °e)
Disyston 433 1.8 x 10— @ 20°% 0.24
Ethylene dibromide 407 11.0 @ 25°¢ 14500
Paraquat dichloride 393 Negllglble (dec.
~300°C)
MCPA, Dimethamine salt 383 Probably negllglble
Guthion 316 3.8 x 104 @ 20° C 0.5
Diazinon 309 1.4 x 10-% @ 20°%C 0.18
Dacthal 308 ~0.5 @ 40°¢C 600

*Compiled from Pesticide User Report system (ARB Report No. PD-77-002,

December 1977).
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and organophosphates, respectively, classes of compounds which have in-

creasingly replaced organochlorine pesticides. While phenyl N-methyl-

carbamate [C6H530NHCH3] is not known to be pesticidal, it may be con-
sidered structurally as the parent of all ring-substituted carbamates,
the majority of which have pesticidal properties. Trimethylphosphate
[(CH50)3P=0] is the simplest member of the orthophosphate esters and,
although not itself used as a pesticide, it is known to be toxic, has mu-
tagenic properties and is of concern as an impurity in commercial organo-
phosphate preparations. The third compound chosen for study was 1,3~di-
chloropropene (cis and trans isomers) which is used alone as a soil fumi-
gant but is even more widely employed in a 2:1 mixture with 1,3-dichloro-
propane (known as D-D mixture, see Table 22) for control of nematodes.

A study of methylbromide, CH3Br, was also considered but given the
rate constant for the reaction of OH radical with CH3Br (k = 4 x 1074 cn~3
molecule~! sec™! at room temperature [Atkinson et al. 19791), its photo-
oxidation reactions would be much too slow to be studied with our available

experimental techniques.

Experimental

Chamber Construction. The outdoor chamber, multiple-reflection

optics, and FT-IR spectrometer employed in this study are illustrated in
Figure 31l. The reaction chamber is essentially a large Teflon bag of
triangular cross-section held semi-rigidly by a framework of steel pipes.
The 50 Mm (2 mil) thick FEP Teflon wall provides excellent transmission
(> 98%) of solar actinic radiation. Depending on the degree of inflatiom,
the chamber’s volume ranges from ~30,000 to 33,000 liters as measured by
injection of a calibration gas. Experiments are usually conducted with
an initial slight overpressure (corresponding to a volume of ~32,000
liters) in the chamber such that, even with a small degree of leakage,
concentrations remain essentially unaffected. The outer frame supports a
two—-section white tarpaulin cover which can readily be removed to expose
the chamber to solar radiation. This tarpaulin traosmits < 0.1% of noom
sunlight (as verified with a radiometer) and is therefore employed also as

an opaque cover for dark experiments.
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Provisions for sample injection and gas sampling consist of several
glass tubes with sealed fittings situated in the middle section o©of the
chamber, and a Teflon disperser tube which runs the length of the cell. A
Teflon-coated panel making up each of the chamber’s end sections attaches
to the mirror assembly by a cylindrical tube of Teflon film, thereby
reducing to a minimum the vibration transmitted by the chamber to the
cell optics. The end panels also provide the attachments for the mixing
fans and the purge inlet and exhaust ports.

Long-Path Optics. The optical system consists of two 30 cm diamter

collecting mirrors and a 15 cm x 25 cm rectangular mirror at the in-focus
end with a common radius of curvature of 10 meters. The in-focus mirror is
modified with the addition of a corner reflector which returns the output
beam for additional sets of reflections, thereby doubling the number of
passes obtainable with the conventional White design. Pathlengths in
excess of | km can be achieved with the use of high-reflectivity (> 99.0%)
fresh gold coating on the mirrors. The kinematic mounts employed in this
system have provided satisfactory alignment stability during actual oper-—
ation over ambient temperature variatioms of up to +15 K.

FT-IR Spectrometer. A rapid-scan Midac interferometer with a maximum
1

resolution capability of 0.06 cm™* is interfaced to the multiple-reflec-
tion optiecs. It is equipped with a dual element, liquid Np=-cooled HgCdTe
and InSb detector. The interferometer and data system are housed in a
3.6 m x 3.6 m air conditioned building immediately adjacent to the outdoor
chamber. Data collection and processing are performed with a Computer
Automation LSI-2/20 wminicomputer with 32K words and a special FFT proces—
sor. System peripherals include a 2.5 M word dual-disk drive, raster
plotter, line printer, oscilloscope display, CRT terminal and magnetic tape
unite.

Materials. Trimethylphosphate (stated purity 97%, Aldrich Chemical
Company) and trans-l,3-dichloropropene (Pfaltz and Bauer, IR spectrum
verified) were used without further purification.

Phenyl N-methylcarbamate was prepared from the reaction of phenol
and methylisocyanate according te the procedure of Addison et al. (1975).
The recrystallized product had a melting point of 829C compared to the
reported value of 759C (Addison et al. 1975); however, the UV spectrum,

X pax = 261 and 267 nm, agreed with that of these authors.
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Samples of NO (commercial purity 99.0%, Matheson) were drawn into
all-glass syringes which were pre-flushed with N7 gas to prevent immediate
conversion to NOy prior to injection into the chamber. NO; was prepared
by transferring the measured amount of NO into a glass syringe containing
0o»

Ozone was produced in a Welsbach laboratory ozonizer and collected
into two- and five-liter Pyrex bulbs. Depending on the requirements of
the experiment, samples with 0.8-1.5% O3, as analyzed by IR spectroscopy,
were obtained by appropriate adjustments of 0o gas flow and/or voltage
applied to the electrodes of this ozonizer.

Experimental Procedure. Each of the compounds under study was intro-

duced into the chamber as a vapor. For liquid samples (trimethylphosphate
and 1,3-dichloropropene), the calculated amount of liquid was placed in a
two-liter bulb and the vapor was carried into the chamber by a stream of
Ny gas while the sample was being gently warmed. The same procedure was
followed for the solid sample (phenyl N-methylcarbamate) with heating to
the melting point and a considerably longer period of flushing with puri-
fied air. The sample was continuously mixed by fans inside the chamber
while being introduced.

The pre-determined amount of 03 in a calibrated glass bulb or NO/NOp
in glass syringes was then flushed and stirred into the chamber through the
Teflon disperser tube. Uniform wmixing of reactants was verified to be
complete within two minutes.

The chamber was thoroughly flushed with clean ambient air after each
run, and was additionally purged and filled with a total of five volumes of
dry (< 10%Z RH, 293 K) purified air (Doyle et al. 1977) prior to each
experiment.

NO and NOy were monitored by a Bendix chemiluminescence instrument.
For some runs, ozone readings were also obtained using a Dasibi UV absorp~
tion ozone monitor to supplement those obtained by infrared measurements.

The growth and decay of all other species were monitored by FT-IR
spectroscopy at pathlengths of 200-540 meters and a spectral resolution of
1 em~l. At these pathlengths, the strong absorptions of H0 and CO;

limit the usable infrared spectral windows to the approximate regiomns

115



730-1300, 2000-2300 and 2400-3000 em~Ll. Approximately 80 seconds were
required to collect the 64 interferograms co—-added for each spectrum.

Reactant and product analyses were obtained from the intensities
of infrared absorption bands by spectral desynthesis {(i.e., successive
subtraction of overlapping absorptions by known species). Low noise
reference spectra for the reactants and identifiable products were gener-
ated for this purpose so as to minimize the increase in the noise level of
the residual spectrum with each stage of subtraction.

Infrared Spectra. The vapor phase infrared spectra of trimethylphos-

phate, phenyl N-methylcarbamate and trans-1,3-dichloropropene in the
720-1360 cm™! spectral region are shown in Figure 32. The absorption
bands used for the measurements and their respective absorption coeffi-

1 1

cients, O(cm~! atm™', base e), are as follows:

Phenyl N-methylcarbamate - 1214.0 em~l (o= 76)

Trimethylphosphate - 856.7 em~l (o= 29)

trans—1,3-Dichloropropane - 1241.9 em™1 (o= 2.7);
932.9 em™! (o= 6.7)

Results and Discussion

1-Naphyl-N-methylcarbamate

A study of l-napthyl N-methylcarbamate (commonly known as carbaryl)
was attempted. The experiments were conducted in a rectangular Teflon
chamber (~8000 liters) which previously housed the long-path optics.
Although the vapor pressure of carbaryl has been reported to be ~3 x
1073 mm Hg at 299 K (a saturation concentration of ~6.3 ppm, as noted
in Table 22), the solid compound could not be introduced in significant
amounts as a vapor into the chamber. Quantities of the finely powered
solid were subsequently spread over the Teflon bottom of the chamber. Dark
reaction with O3 and irradiation with NOy were carried out for up to
four hours with periodic stirring by fans. No detectable product formation
was observed in either case.

In view of the problems associated with introduction of this compound
into the vapor phase, further studies were carried out with the homologous
compound, phenyl N-methylcarbamate in the ~32,000-1liter chamber, as dis-

cussed below.
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Figure 32, Vapor phase infrared spectra of a) trimethylphosphate,
b) phenyl N-methylcarbamate and c¢) trans-1,3-dichloro-
propene.
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Phenyl N-methylcarbamate

a- 03 Reaction. Ozone (3.0 ppm) was added to 1.0 ppm of the
carbamate in dry air. While no measurable change in 03 concentration was
detected during a 4.5-hour period in the dark, a significant loss of phenyl
N-methylcarbamate, corresponding to a rate of (5.9 + 0.4) x 1074 min‘l,
was observed during this experiment. There were no products detectable in
the infrared spectrum. The decay in the carbamate concentration was
presumably due to condensation on the walls of the outdoor chamber since
the ambient temperature dropped from 297 to 288 K during the course of the
experiment (c.f. other experiments below). The vapor phase reaction of
phenyl N-methylcarbamate with 03 is thus either negligible or too slow to
be followed by the experimental method employed here.

b. NO,—Air Photooxidation. The photooxidation of phenyl N-methyl-

carbamate was studied with initial concentrations of 1.0 ppm carbamate and
0.3 ppm NOy (0.15 ppm NOs and 0.15 ppm NO). Conversion of NO to NOj
proceeded slowly, with NO consumption complete after 200 minutes, but no
03 (< 0.06 ppm) was observed in the infrared spectra during an additional
60 minutes of irradiation. No measurable change in the carbamate concen-
tration occurred during the first three hours of irradiation when the
chamber temperature remained essentially constant at 309 + 1 K. However,
during the next hour, when the temperature rapidly dropped to 293 X
during the afternoom sunlight irradiation, a sharp decrease in the carba-
mate concentratiom, amounting to a 33% loss, occurred. This loss is almost
certainly due to condensation of the carbamate. The above results indicate
that either phenyl N-methylcarbamate is not reactive in irradiated NOyg—-air
systems, or that when it reacts it acts as a net radical sink, suppréssing
the OH radical levels generated in this system to a point such that the
rate of their reaction with carbamate is too slow to be measured by this
long-path FT-IR method over a period of a few hours.

c. OH Radical Rate Constant Determination. For the purposes of mea-

suring the rate comnstant for the reaction of the OH radical with the carba-
mate, the reactivity of these relatively imert NOy-photooxidation systems
systems can be greatly enhanced by addition of a reactive component such as
m-xylene. This technique has been successfully applied to similar systems

in this laboratory to measure rates of reaction with the OH radical.
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Essentially, the decays of m-xylene and the compound of interest are mea—

sured and since

OH + m-xylene - products (1)
OH + reactant - products (2)
then
t
In([m-xylene] o/ [m~xylenely) = k; [ [0OH].dt (1)
to
and
t
In([reactant] o/ [reactant]y) = kp [ [OH]dt (11)
to
Hence,

In([reactant]t,/[reactant]y) = kp/kj In([m-xylenely/[m-xylenel;) (I11)

where [reactantl].,, [reactant]l; are the reactant concentrations at times
to and t, [m-xyleneli,, [m-xylene], are the corresponding m-xylene concen-
trations, and k] and kg are the rate constants for reactions (1) and
(2), respectively. Hence, a plot of ln([reactant]to/[reéctant]t) against
In([m~xylene]t,/[m-xylene]y) should be a straight line of slope ko/ky
(Atkinson et al. 1978). Since kj is known to be 2.1 x 10!l cm3 molecule~l
secl at 300 K (Atkinson et al. 1979), ks, may be calculated. This ap-
proach assumes that the sole reactions of m-xylene and the reactant are
with the OH radical (which is the case for m-xylene). In case of appreci-
able reaction of the compound of interest with O3, the experiment must be
carried out at high initial NO levels to delay the formation of 03 and
provide sufficient time to permit the measurement of an adequate number of
concentration points.

An irradiation experiment was thus conducted in which the initial
concentrations of reactants were approximately 0.9 ppm phenyl N-methyl-
carbamate, 1.4 ppm m-xylene and 0.3 ppm NO, (0.13 ppm NO + 0.18 NOj) .
The reaction was allowed to proceed past the 03 maximum, after which an
additional 0.6 ppm of NO was introduced into the chamber.

Figure 33 shows the observed time-concentration profiles of the
carbamate, m-xylene, NO and O3 during this irradiation. Other products

observed were peroxyacetyl nitrate (PAN), HCHO, HCOOH and HNO3, which are
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known products of the NO, photooxidation of m-xylenme. Although ~25% of
the carbamate disappeared up to the time when a significant drop in temper-
ature occurred, no products unique to the reaction of phenyl N-methyl-
carbamate itself could be clearly identified, possibly due to low yields
and/or low absorption coefficients of the products formed.

The first 90 minutes following the second NO injection showed a
consumption of about 147 carbamate and 357 m-xylene. A mnear=-constant
temperature (304.8 + 1 K) prevailed during this segment of the experiment,
and carbamate losses due to condensation were presumably mnegligible. The
plot of the 1n(C,/Cy) data for phenyl N-methylcarbamate against those
of m~xylene for this period (Figure 34) yields a slope = (kxylene)/
(kcarbamate) ©f 2.6 + 0.3. This corresponds to a rate constant of 8 x
10712 cm3 molecule™l sec~! at 305 K for the reaction of OH with phenyl
N-methylcarbamate.

Trimethylphosphate

a. Reaction with 03. A mixture of 0.3 ppm trimethylphosphate and

3.0 ppm 03 did not yield any detectable products or show a significant
change in the 03 concentration during a four-hour dark experiment. Ap-
proximately 9% of trimethylphosphate disappeared, corresponding to a loss
rate of 3.9 x 10~% min‘l, presumably to the chamber walls. The average
temperature during the experiment was 298 + 3 K.

Subsequently, the decay of l.4 ppm trimethylphosphate in the chamber
was followed for three hours at 295 + 3 K under sunlight irradiatiom.
The rate of loss was found to be (4.9 + 0.4) x 10=4 min-l, Since tri-
methylphosphate only absorbs very weakly in the actinic region (Benschap
and Halmann 1974), and since the measured rate of loss agreed with that
found in the dark reaction exposure to 03, the decay is most probably
due to adsorption on the chamber walls.

b. NO,-Air Photooxidation: Determination of OH Rate Constant. As

in the case of phenyl N-methylcarbamate, the reaction in the irradiated
mixture of trimethylphosphate alone in the presence of NOy was too slow
to be measured by the present techniques. The rate constant for reaction
of trimethylphosphate with OH radicals was determined by carrying out

NOy-air-trimethylphosphate irradiations with added m-xylene. The initial
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concentrations employed were: 1.8 ppm trimethylphospate, 1.1 ppm m-xylene
and 0.24 ppm NOy (0.12 ppm each of NO and NOj).

Figure 35 shows the date plotted in accordance with equation III. The
concentrations of trimethylphosphate were corrected for losses according to
the measured decay rate of the compound alone (4.9 x 10~% min~l at ~298
K). The wvalue of (kxylene)/(kphOSPhate) determined from the plot of
Figure 35 is 4.8 + 0.4, leading to a rate constant of 4.4 x 10712 cm3
molecule~! sec~! for the reaction of OH with trimethylphosphate (the
error given for the slope does not reflect the additional wuncertainty
caused by the error in the decay rate constant.) It should be noted that
the NO, photooxidation experiment with added m-xyleme was carried out at
a significantly higher prevailing temperature (312 + 3 K) than that for the
decay experiment, and thus the corrections for trimethylphosphate decay
which were made in the above analysis may have been over-estimates.

The (kgylene)/ (Kphosphate) ratio corresponding to no corrections
for wall losses is 2.9 * 0.2, leading to k(OH + trimethylphosphate) =7 x
10712 cm3 molecule=l sec-l. Hence, taking an average of the two wvalues
obtained leads to an OH radical rate constant of (6 + 2) x 10712 cp3
molecule~! sec~! at 312 + 3 K, which is in excellent agreement with that
calculated (5.4 x 10712 cm3 molecule™l sec™! at 305 K) from the formula
given by Atkinson et al. (1979) for the reaction of hydroxyl radicals with
ethers containing primary C-H bonds.

trans~l,3-~Dichloropropene

a. Reaction with 03. The reaction of 5.0 ppm trans-1,3-dichloro-

propene and 1.0 ppm 03 was monitored for three hours in the dark at a
nearly constant temperature of 293 K. (It was previously verified that the
dichloropropene by itself had no measurable decay in the reaction chamber
for comparable periods of time.) A plot of 03 consumption with time
(Figure 36) yielded a slope of (5.0 + 0.13) x 103 min-1. During the
same time period, the corresponding loss in dichloropropene amounted to
12,7% of the initial concentration. From the O3 decay rate data, a rate
constant of (l.1 + 0.15) x 1073 ppm~! min~! or (7.3 + 1.0) x 10~19 cm3
molecule™! sec™! at 293 K can be determined for the reaction of 03 with

trans-1,3~dichloropropene.
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In the second experiment, 2.2 ppm dichloropropene and 2.7 ppm O3
were reacted. After 90 minutes, a second injection of 03 (5.0 ppm total
03 with 1.5 ppm dichloropropene remaining at this point) was made and the
rate of consumption of the dichloropropene was monitored for an additional
110 minutes. The rate constant derived for the reaction under excess 03
was in excellent agreement with that obtained from the first experiment
which was carried out in excess dichloropropene. This 03 rate constant
is totally comsistent with those for the alkenes (Niki 1979) when the
deactivating effect of the substituent Cl atoms is taken dinto account.

The dichloropropene/ozone stoichiometry was determined to be in the
range (1.1-1.5):1 for all conditions of excess 03, excess dichloropropene,
or nearly equimolar initial reactant concentrations, with the higher ratio

being reflected earlier in the reaction.
0

Formylchloride (HgCl) was the major product observed by infrared
spectroscopy, but it could not be quantified due to the difficulty in
measuring its absorption coefficients. HC1 and CO were also observed to
be formed, most likely from the facile decomposition of formylchloride.

Product formation can be postulated as proceeding via addition of O3
to the double bond:

0 0
[ClCHZé—O]'b ClCHngH

Q
o M
[C1CH)CHOO] + HCCL

C1CH9CH=CHC1l + 03 — ClCHz? Cc-Cl
H

C1CH,CH + [C1CHOO]
o

|
[c1¢-0. 1
I

HC1 + CO»
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However, within the available infrared spectral windows, no clearly measur-
able absorption bands could be attributed to either chloroacetaldehyde or
chloroacetic acid. If step (a) is the favored pathway, the chloroacetic
acid formed could possibly be present only in the vapor phase at very low
concentrations, since this compound is a solid at room temperature (m.p.
62.40C).

b. NO.—-Air Photooxidations: Products and OH Radical Rate Constante.

Sunlight irradiated mixtures of trans—-1,3-dichloropropene and NOy in air
yielded the same products as those observed for the reaction of 03 with
the dichloropropene both prior to and after 03 formationm. Details of
possible reaction mechanisms are expected to be analogous to those proposed
in a similar study of chlorinated ethenes (Gay et al. 1976).

Figure 37 shows selected time~concentration data for the irradiation
of a mixture with initial concentrations of 2.3 ppm trans-1,3-dichloro-
propene, l.9 ppm m-xylene and 2.0 ppm NOy (1.7 ppm NO and 0.3 ppm NOj).
Not shown are the time-concentration profiles for the known products of
m—xylene/NOX photooxidations, such as PAN, HCHO, HCOOH, and HNOj. Only
the absorbance values (base e) of the 739 cm~l Q-branch at a pathlength
of 220 meters are plotted for formylchloride due to lack of absorption
coefficients for this compound. A high initial concentration of NO was
purposely employed to delay O3 formation.

It is seen from Figure 37 that NO was rapidly depleted and was fol-
lowed by a rapid rise in O3 concentration for t > 50 minutes. For t < 50
minutes, 03 levels were suppressed by excess NO, and hence reaction of
03 with the dichloropropene was negligible. Hence measurements made
during this time period provided valid data points for the parallel reac-
tions of OH with the dichloropropene and m-xylene. After 50 minutes of
irradiation, 9.5%Z and 15.8% of the initial concentrations of trans-1,3-
dichloropropene and m-xylene, respectively, were consumed. A plot of
equation III for t < 50 minutes for dichloropropene and m-xylene yielded
(kxylene/kdichloropropene) = 1+5 % 0.2 This corresponds to a rate con-
stant of 1.4 x 10711 cm3 molecule~! sec~! for the reaction of OH with
trans-1,3-dichloropropene, which is again consistent with the trends for

the homologous compounds ethene, vinyl chloride and propene (Atkinson et
al. 1979).
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APPENDIX A

Detailed Data Sheets for NOy-Air Irradiations Concerning

the Chamber~ Dependent Radical Source
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Number of

Index for Appendix A

Experiment Description

EC-434 NOX-Air, Standard

EC-435 NOX—Air, Standard

EC-436 NOX—Air, High NOx

EC-437 NOX—Air, Low NOx

EC-438 NO_-Air, High N02/No

EC-439 NOx—Air, Dry, Unconditioned Chamber
EC-440 NOX—Air, High NO

EC-441 NOX-Air, Standard

EC-442 NO_-Air, High NO,/NO

EC-443 NOX—Air, Dry

EC-444 NOX-Air, Dry

EC-445 NOX—Air, HZO Saturated

EC-446 NOX—Air, High RH

EC-447 NOX—Air, T = 324 X, Standard
EC-448 NOX—Air, T = 324 X, Standard
EC-449 NoxeAir, T = 324 K, Dry

EC-450 NOX—Air, T = 424 K, HZO Saturated
EC-451 NO_-Air, T= 324 K, High NOZ/NO
EC-452 NOX—Air, T = 284 K, Standard
EC-453 NOX—Air, T = 284 K, Dry

EC-454 NOX—Air, T = 284 K, HZO Saturated
EC~455 NO_-Air, T = 284 X, High NOZ/NO
EC-457 NOX—Air, Light Intensity Varied
EC~458 NOX—Air, Variable Light Intensity
EC-459 NOX-Air, Syringe Injected NOX
EC-460 NOX-Air, NO Injection Previous Day
EC-462 O3 Injection

.EC-463 NOX—Air, Varied Reaction Injection
EC-464 NO_-Air, NO = NO, = 0.1

EC-465 NO_-Air, NO = NO, = 0.4

EC-469 NOX—Air, Defocused Light
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141
142
143
145
147
149
151
152
153
155
156
157
158
159
160
161
163
164
165
166
167
168
169
171
172
173
175
176
177
179
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Index for Appendix A (continued)

Number of
Experiment

Description

AFF-11
AFF-24
AFF-27
AFF-35
AFF-41
AFF-46
AFF-47
AFF-51
AFF-61
ITC-377
ITC-378
ITC-379
ITC-380
ITC-381
ITC-382
ITC-383
BAG-401
BAG-402
BAG-403
BAG-404
BAG-405
BAG-501
BAG-502
ARB-1
ARB-2

NOX—Air ITrradiation (New Bag)

NOX—Air Irradiation

NOX—Air Irradiation

NOX—Air Irradiation
NOX—Irradiation
NOX Irradiation
NOX Irradiation
NO Irradiation

X

NOXwAir Irradiation

NOX—Air Irradiation, New Bag
NOX—Air Irradiation, Repeat
NO_-Air Trradiation, High NOZ/NO

NO -Air Irradiation, Variable Light Intensity

]

NO —-Air Irradiation, Variable Light Intensity

"

NO —Air Irradiation, 3% RH

b

NOX—Air Irradiation
NOX—Air Irradiation #1
NOX—Air Irradiation #2

NOX—Air Irradiation #3

C3/C3 - NO_ Photolysis #4

NOX—Air Irradiation #5

03/C3 - ?OX Photolysis #1
NOC -C./C. - Irradiation #2
x 373

NOX—Air Irradiation:

NOX—HNO3

Effects of NH

Air Irradiation:
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